精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是边长为1的正方形且互相垂直,D为AA1的中点,E为BC1的中点.
(Ⅰ)证明:DE∥平面A1B1C1
(Ⅱ)求平面C1BD和平面CBD所成的角(锐角)的余弦值.

【答案】解:(Ⅰ)证明:如图,过E作EF∥BC交BC于F,

∵E为BC1的中点,∴EF为△BB1C1的中位线,则EF=

又D为AA1中点,∴D

∵四边形AA1B1B为正方形,∴EF∥DA1,且EF=DA1

∴四边形DA1FE为平行四边形,则DE∥A1F,

∵DE平面A1B1C1,A1F平面A1B1C1

∴DE∥平面A1B1C1

(Ⅱ)解:∵AA1C1C是正方形,∴AC⊥AA1

又平面AA1B1B⊥平面AA1C1C,且平面AA1B1B⊥平面AA1C1C,

∴AC⊥平面AA1B1B,则AC⊥BC.

分别以BA、AD、AC所在直线为x、y、z轴建立空间直角坐标系,

则C(0,0,1),D(0, ,0),B(﹣1,0,0),C1(0,1,1),

设平面BCD的一个法向量为

,令y=2,得

设平面C1BD的一个法向量为

,令y=2,得

∴cos< >=

∴平面C1BD和平面CBD所成的角(锐角)的余弦值为


【解析】(Ⅰ)过E作EF∥BC交BC于F,可得EF为△BB1C1的中位线,结合已知可得EF∥DA1,且EF=DA1,则四边形DA1FE为平行四边形,得DE∥A1F,由线面平行的判定可得DE∥平面A1B1C1;(Ⅱ)由题意可得AC⊥平面AA1B1B,则AC⊥BC.分别以BA、AD、AC所在直线为x、y、z轴建立空间直角坐标系,求出所用点的坐标,得到平面C1BD和平面CBD的一个法向量,由两法向量所成角的余弦值可得平面C1BD和平面CBD所成的角(锐角)的余弦值.
【考点精析】掌握直线与平面平行的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如表:

选考物理、化学、生物的科目数

1

2

3

人数

5

25

20

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记X表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量X的分布列和数学期望;
(III)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作Y,求事件“y≥2”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(m,cos2x), =(sin2x,n),设函数f(x)= ,且y=f(x)的图象过点( )和点( ,﹣2).
(Ⅰ)求m,n的值;
(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

≥5

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某城镇由6条东西方向的街道和7条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道.现要从城镇的A处走到B处,使所走的路程最短,最多可以有种不同的走法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,点P是双曲线在第一象限内的点,直线PO,PF2分别交双曲线C的左、右支于另一点M,N,若|PF1|=2|PF2|,且∠MF2N=120°,则双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2(a为实常数).
(Ⅰ)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ) 写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ) 过点M(﹣1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

同步练习册答案