精英家教网 > 高中数学 > 题目详情
已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an•log 
12
an,Sn=b1+b2+…+bn,求使Sn+n•2Pn+1>50成立的正整数n的最小值.
分析:(Ⅰ)设出等比数列{an}的公比为q,根据等比数列的通项公式及等差数列的性质分别化简已知的两条件,得到一个方程组,化简后即可求出a1和q的值,写出数列an的通项公式即可;
(Ⅱ)把(Ⅰ)求出的数列an的通项公式代入,利用对数函数的性质化简,确定出bn的通项公式,列举出数列{bn}各项的和的相反数设为Tn,记作①,两边乘以2得到另一个关系式,记作②,①-②即可求出-Tn,即为Sn,把求出的Sn代入已知的不等式中化简,即可求出满足题意的最小的正整数n的值.
解答:解:(Ⅰ)设an的公比为q,由已知,
a2+a3+a4=28
2(a3+2)=a2+a4
?
a3=8
a2+a4=20
?
a1q2=8
a1q+a1q3=20
?
a1=2
q=2

∴an=a1qn-1=2n;(5分)
(Ⅱ)bn=2nlog
1
2
2n=-n•2n

设Tn=1×2+2×22+3×23+…+n×2n,①
则2Tn=1×22+2×23+…+(n-1)×2n+n×2n+1,②
①-②得:-Tn=(2+22+…+2n)-n×2n+1=-(n-1)×2n+1-2,
∴Sn=-Tn=-(n-1)×2n+1-2(10分)
故Sn+n•2n+1>50?-(n-1)×2n+1-2+n×2n+1>50,
?2n>26,
∴满足不等式的最小的正整数n为5.(12分)
点评:此题考查学生掌握用错项相减的方法求数列前n项的和,以及灵活运用等比数列的通项公式来解决问题.学生做第二问时注意不是直接求Sn,而是利用错位相减的方法先求出Sn的相反数Tn
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知单调递增的等比数列an满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项,则数列an的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anlog
12
an,求数列{bn}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlog 
12
an,Sn=b1+b2+b3+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足a2+a3+a4=28,a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=-nan,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案