精英家教网 > 高中数学 > 题目详情

已知函数.(1)求函数的最小正周期和最小值;(2)若,求的值.

(1) ;(2).

解析试题分析:(1)先用二倍角正弦公式将式子化简,再求最值和周期;(2)先利用第一问的解析式将求出来,所以下面的关键是求出,利用已知,求出,但是得进行正负的取舍,得到的准确值后,代入到的表达式中.
试题解析:(1)已知函数即,             2分
                       3分
时,即,          4分
                      6分
(2)     8分
,解得:   10分
               11分
所以               12分.
考点:1.二倍角正弦公式;2.同名三角函数的商数关系、平方关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)求函数最大值和最小正周期;
(2)设的三个内角,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值是1,最小正周期是,其图像经过点
(1)求的解析式;
(2)设为△ABC的三个内角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,已知,其中分别为的内角所对的边.求:
(Ⅰ)求角的大小;
(Ⅱ)求满足不等式的角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,倾斜角为的直线与单位圆在第一象限的部分交于点,单位圆与坐标轴交于点,点轴交于点轴交于点,设

(1)用角表示点、点的坐标;
(2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,,)的图像与轴的交点
,它在轴右侧的第一个最高点和第一个最低点的坐标分别为
(1)求函数的解析式;
(2)若锐角满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 已知单位圆上有四点, 分别设的面积为.

(1)用表示
(2)求的最大值及取最大值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f (x) =.
(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g (x)在区间上的值域.

查看答案和解析>>

同步练习册答案