精英家教网 > 高中数学 > 题目详情

 已知4个命题:

①若等差数列的前n项和为则三点共线;

②命题:“”的否定是“”;

③若函数在(0,1)没有零点,则k的取值范围是

是定义在R上的奇函数,的解集为(2,2)

其中正确的是     

 

【答案】

①②④

【解析】

试题分析:①,设等差数列的公差为d,

即 前两个点连线的斜率等于后两个点连线的斜率,故三点共线,故①正确.

②根据命题的否定的定义,“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;是正确的,故②正确.

③函数在(0,1)没有零点,故f′(x)=1+>0,所以函数在(0,1)内是增函数,x-<0,当k≥2时,函数有零点,③不正确.

④f(x)是定义在R上的奇函数,f′(x)>0,且f(2)=,所以x>0时,函数是恒为正值,f(0)=0,x<0时函数为负值,2f(2)=1,则xf(x)<1的解集为(-2,2).正确.

故答案为:①②④.

考点:本题主要考查利用导数研究函数的单调性;命题的否定;函数零点的判定定理;三点共线.

点评:综合题,考查三点共线,命题的否定,零点,导数与不等式的知识,考查知识的灵活应用能力,属中档题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知4个命题:
①若等差数列{an}的前n项和为Sn则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
),共线;
②命题:“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③若函数f(x)=x-
1
x
+k在(0,1)没有零点,则k的取值范围是k≥2,
④f(x)是定义在R上的奇函数,f′(x)>0,且f(2)=
1
2
,则xf(x)<1的解集为(-2,2).
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知4个命题:
①若等差数列{an}的前n项和为Sn则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
),共线;
②命题:“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③若函数f(x)=x-
1
x
+k在(0,1)没有零点,则k的取值范围是k≥2,
④f(x)是定义在R上的奇函数,f′(x)>0,且f(2)=
1
2
,则xf(x)<1的解集为(-2,2).
其中正确的是______.

查看答案和解析>>

科目:高中数学 来源:2011年河南省普通高中高考适应性测试数学试卷(文科)(解析版) 题型:解答题

已知4个命题:
①若等差数列{an}的前n项和为Sn则三点(10,),(100,),(110,),共线;
②命题:“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③若函数f(x)=x-+k在(0,1)没有零点,则k的取值范围是k≥2,
④f(x)是定义在R上的奇函数,f′(x)>0,且f(2)=,则xf(x)<1的解集为(-2,2).
其中正确的是   

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4个命题:

  ①若等差数列{}的前n项和为,则三点(10,),(100,),(110,)共线;

  ②命题“∈R,使得+1>3x”的否定是“∈R,+1≤3x”;

  ③若函数f(x)=x-+k在(0,1)没有零点,则k的取值范围是k≥2;

③f(x)是定义在R上的奇函数(x)>0,且f(2)=,则xf(x)<1的解集为(-2,2).

  其中正确的是_____________.

查看答案和解析>>

同步练习册答案