精英家教网 > 高中数学 > 题目详情
9.设集合P={ x,1 },Q={ y,1,2 },其中x,y∈{ 1,2,…,9 },且P⊆Q.将满足这些条件的每一个有序整数对(x,y)看作一个点,这样的点的数目是14.

分析 根据题意,由集合包含的意义,分析可得若P⊆Q,有2种情况:①、x≠y,则必有x=2,②、x=y,分析x、y可取的值,即可得每种情况中(x,y)的情况数目,由分类计数原理,将其相加计算可得答案.

解答 解:根据题意,若P⊆Q,有2种情况:
①、x≠y,则必有x=2,y可取的值为3、4、5、6、7、8、9,共7种情况,即(x,y)有7种情况,
②、x=y,此时x、y可取的值为3、4、5、6、7、8、9,共7种情况,即(x,y)有7种情况,
则(x,y)有7+7=14种情况,
故答案为14.

点评 本题考查分类计数原理的运用,关键是由集合中包含关系的定义,分析得到x、y可取的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若输出k的值为6,则判断框内可填入的条件是(  )
 
A.s>$\frac{1}{2}$B.s>$\frac{3}{5}$C.s>$\frac{7}{10}$D.s>$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)为偶函数,又在区间[0,2]上有f(x)=$\left\{\begin{array}{l}{-{x}^{2}-\frac{3}{2}x+5,0≤x≤1}\\{{2}^{x}+2,1<x≤2}\end{array}\right.$,若F(x)=f(x)-a在区间[-2,2]恰好有4个零点,则a的取值范围是(4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设有一个边长为3的正三角形,记为A1,将A1的每边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后得到的图形记为A2,将A2的每边三等分,再重复上述过程,得到图象A3,再重复上述过程,得到图形A4,A5,则A3的周长是(  )
A.16B.$\frac{16}{3}$C.$\frac{256}{9}$D.$\frac{128}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知程序框图如图,若a=0.62,b=30.5,c=log0.55,则输出的数是$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,某人欲测量某建筑物的高度BC,在A处测得建筑物顶端C的仰角为30°,然后,向建筑物方向前进200m到达D处,在D处测得C的仰角为75°,则建筑物的高度为(  )
A.50($\sqrt{3}$+1)mB.50($\sqrt{2}$+1)mC.50($\sqrt{3}$-1)mD.50($\sqrt{3}$+$\sqrt{2}$) m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.执行如图的程序框图,输出的s=(  )
A.10000B.5050C.101D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线l过点A(3,2)与圆x2+y2-4x+3=0相切,则直线l的方程为x=3或3x-4y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2-(5a-1)x+3a+1(a∈R).
(1)若f(x)在区间[1,+∞)上是单调增函数,求a的取值范围;
(2)在(1)的条件下,若函数f(x)在区间[1,5]上有零点,求a的取值范围.

查看答案和解析>>

同步练习册答案