【题目】已知函数f(x),g(x)分别由下表给出,
则f[g(1)]的值为________,满足f[g(x)]>g[f(x)]的x的值是________.
【答案】1 2
【解析】
结合表格,先求出内函数的函数值,再求出外函数的函数值;分别将x=1,2,3代入f[g(x)],g[f(x)],
判断出满足f[g(x)]>g[f(x)]的x.
∵g(1)=3,∴f[g(1)]=f(3)=1,由表格可以发现g(2)=2,f(2)=3,∴f(g(2))=3,g(f(2))=1.;
当x=1时f[g(1)]=1,g[f(1)]=g(1)=3不满足f[g(x)]>g[f(x)]
当x=2时,f[g(2)]=f(2)=3,g[f(2)]=g(3)=1满足f[g(x)]>g[f(x)]
当x=3时f[g(3)]=f(1)=1,g[f(3)]=g(1)=3不满足f[g(x)]>g[f(x)]
故满足f[g(x)]>g[f(x)]的x的值是2
故答案为1;2
科目:高中数学 来源: 题型:
【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:
运动达人 | 参与者 | 合计 | |
男教师 | 60 | 20 | 80 |
女教师 | 40 | 20 | 60 |
合计 | 100 | 40 | 140 |
(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(2)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.
参考公式:,其中.
参考数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求圆的直角坐标方程;
(2)设,直线的参数方程是(为参数),已知与圆交于两点,且,求的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.
若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )
A. 作品 B. 作品 C. 作品 D. 作品
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com