精英家教网 > 高中数学 > 题目详情

【题目】2020年新年伊始,新型冠状病毒来势汹汹,疫情使得各地学生在寒假结束之后无法返校,教育部就此提出了线上教学和远程教学,停课不停学的要求也得到了家长们的赞同.各地学校开展各式各样的线上教学,某地学校为了加强学生爱国教育,拟开设国学课,为了了解学生喜欢国学是否与性别有关,该学校对100名学生进行了问卷调查,得到如下列联表:

喜欢国学

不喜欢国学

合计

男生

20

50

女生

10

合计

100

1)请将上述列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系?

2)针对问卷调查的100名学生,学校决定从喜欢国学的人中按分层抽样的方法随机抽取6人成立国学宣传组,并在这6人中任选2人作为宣传组的组长,求选出的两人均为女生的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)列联表见详解,能在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系;(2

【解析】

1)根据题意填写列联表,计算,对照临界值得出结论;

2)根据题意求出分层抽样随机抽取的6人中男生2人,女生4人,利用列举法求出基本事件数,计算对应的概率值.

解:(1)补充完整的列联表如下:

喜欢国学

不喜欢国学

合计

男生

20

30

50

女生

40

10

50

合计

60

40

100

计算得的观测值为

所以能在犯错误的概率不超过0.001的前提下认为喜欢国学与性别有关系;

2)喜欢国学的共60人,按分层抽样抽取6人,

则每人被抽到的概率均为,需抽取男生2人,女生4人,

设抽取的男生为,女生为

选出的两人均为女生为事件

则基本事件空间

事件

故选出的两人均为女生的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxsincosω0),如果存在实数x0,使得对任意的实数x,都有fx02020fxfx0)成立,则ω的最大值为(

A.2020B.4040C.1010D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)当时,讨论的单调性;

3)若有两个极值点,且不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】垃圾种类可分为可回收垃圾,干垃圾,湿垃圾,有害垃圾,为调查中学生对垃圾分类的了解程度某调查小组随机抽取了某市的100名高中生,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于3项的称为比较了解少于三项的称为不太了解调查结果如下:

0

1

2

3

4

5

5项以上

男生(人)

1

10

17

14

14

10

4

女生(人)

0

8

10

6

3

2

1

1)完成如下列联表并判断是否有95%的把握认为了解垃圾分类与性别有关?

比较了解

不太了解

合计

男生

__________

__________

__________

女生

__________

__________

__________

合计

__________

__________

__________

2)从能准确分类不少于3项的高中生中,按照男、女生采用分层抽样的方法抽取9人的样本.

i)求抽取的女生和男生的人数;

ii)从9人的样本中随机抽取两人,求男生女生都有被抽到的概率.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,各项为正的等比数列的前项和为__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).

1)求数列的通项公式;

2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线l的极坐标方程为ρcosθ=4,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点O,极轴为x轴的正半轴建立直角坐标系,射线l':y=kx(x≥0,0<k<1)与曲线C交于OM两点.

Ⅰ)写出直线l的直角坐标方程以及曲线C的参数方程;

Ⅱ)若射线l与直线l交于点N,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

查看答案和解析>>

同步练习册答案