【题目】已知Sn是等差数列{an}的前n项和,且S8>S9>S7 , 给出下列四个命题:
①d<0;
②S16<0;
③数列{Sn}中的最大项为S15;
④|a8|>|a9|.
其中正确命题有 .
【答案】①④
【解析】解:∵S8>S9 , 且S9=S8+a9 , ∴S8>S8+a9 , 即a9<0,
又S8>S7 , S8=S7+a8 ,
∴S7+a8>S7 , 即a8>0,
∴d=a9﹣a8<0,故①为真命题;
∵S9>S7 , S9=S7+a8+a9 ,
∴S7+a8+a9>S7 , 即a8+a9>0,
又∵a1+a15=2a8 ,
∴S15= =15a8>0,
又∵a1+a16=a8+a9 ,
∴S16= =8(a8+a9)>0,故②错误;
又a1+a17=2a9 ,
∴S17= =17a9<0,
∵a8>0,a9<0,∴数列{Sn}中的最大项为S8 , 故③错误;
∵8(a8+a9)>0,∴|a8|>|a9|,故④正确;
所以答案是:①④.
【考点精析】掌握等差数列的前n项和公式是解答本题的根本,需要知道前n项和公式:.
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 (单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益 (单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示, 与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 ,向量 ,函数f(x)= .
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动 个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1,F2分别为双曲线的左、右焦点,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A. (1,+∞) B. (1,2] C. (1,] D. (1,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有三支股票, , ,28位股民的持有情况如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人数是持有股票的人数的2倍.在持有股票的人中,只持有股票的人数比除了持有股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有股票.则只持有股票的股民人数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照, ,…, 分成8组,制成了如图1所示的频率分布直方图.
(图1) (图2)
(Ⅰ)求频率分布直方图中字母的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱台中, 与分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, , , 为中点, (, ).
(1)设中点为, ,求证: 平面;
(2)若到平面的距离为,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com