精英家教网 > 高中数学 > 题目详情
如下图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点,

(1)求证:AC1∥平面CDB1

(2)求异面直线AC1与B1C所成角的余弦值.

思路解析:本题第一问要证明直线与平面平行,可以围绕着线面平行的判定定理,转而去证明线线平行,结合已知条件不难得以证明;第二问是要求异面直线所成的角,就要考虑平移其中一条(或两条)直线,从而转化为相交两直线所成的角的问题,从而得以求解.

(1)证明:设CB1与C1B的交点为E,连结DE.

∵D是AB的中点,E是BC1的中点,

∴DE∥AC1.

∵DE平面CDB1,AC1平面CDB1,

∴AC1∥平面CDB1.

(2)解:∵DE∥AC1,∴∠CED为AC1与B1C所成的角.

在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,

∴由余弦定理得

cos∠CED=.

∴异面直线AC1与B1C所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源:导学大课堂必修二数学苏教版 苏教版 题型:022

如下图,有两个相同的直三棱柱,高为,底面三角形的三边长分别为3a、4a、5a(a>0).用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:022

(2005上海,11)如下图,有两个相同的直三棱柱,高为,底面三角形的三边长分别为3a4a5a(a0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,BC=CC1=a,AC=2a.

(1)求证:AB1⊥BC1;

(2)求二面角B—AB1—C的大小;

(3)求点A1到平面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点。

(1)求点B到面A1C1CA的距离;

(2)求二面角B―A1D―A的大小;

(3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分别为棱C1C,B1C1的中点。

(1)求点B到面A1C1CA的距离;

(2)求二面角B―A1D―A的大小;

(3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由。

查看答案和解析>>

同步练习册答案