精英家教网 > 高中数学 > 题目详情
10.如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为$\sqrt{5}$的等腰三角形,E、F分别为AB、VC的中点.
(1)求证:EF∥平面VAD;
(2)求二面角V-AB-C的大小.

分析 (1)取VD中点M,连结AM、MF,推导出四边形AEFM是平行四边形,从而EF∥AM,由此能证明EF∥平面VAD.
(2)取CD中点N,则EN⊥AB,连结VE,VN,则VE⊥AB,∠VEN是二面角V-AB-C的平面角,由此能求出二面角V-AB-C的大小.

解答 证明:(1)取VD中点M,连结AM、MF,
∵M、F分别是VD、VC中点,
∴MF∥AB,且$MF=\frac{1}{2}AB=AE$,(2分)
∴四边形AEFM是平行四边形,∴EF∥AM(4分)
又AM?平面VAD,EF?平面VAD,
∴EF∥平面VAD.(6分)
解:(2)取CD中点N,则EN⊥AB,
连结VE,VN,∵VA=VB,E是AB中点,
∴VE⊥AB,(8分)
∴∠VEN是二面角V-AB-C的平面角,(10分)
∴VE=VN=2,EN=AD=2,
∴∠VEN=60°
即二面角V-AB-C的大小为60°.(12分)

点评 本题考查线面平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足an+1=2+an(n∈N*),a2=3a5,其前n项和为Sn,若对于任意的n∈N*,总有Sn≥Sk成立,则|ak|+|ak+1|+…+|a15|=82.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=sinxcosx+$\frac{1}{2}$最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.由下面样本数据利用最小二乘法求出的线性回归方程是$\widehat{y}$=-20x+a,则实数a=250
x88.28.48.68.89
y908483807568

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(α+$\frac{π}{4}$)=2,tan(β-$\frac{3π}{4}$)=-3,则tan(α-β)=(  )
A.1B.-$\frac{5}{7}$C.$\frac{5}{7}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x10=a0+a1(x-1)+a2(x-1)2+…+a10•(x-1)10
(1)求a0+a1+a2+…+a10的值;
(2)若x10-3=f(x)(x-1)2+ax+b,其中f(x)是关于x的多顶式,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,AB=$\sqrt{2}$,点D在边BC上,BD=2DC,cos∠DAC=$\frac{3\sqrt{10}}{10}$,cos∠C=$\frac{2\sqrt{5}}{5}$.
(1)求$\frac{AC}{DC}$的值;
(2)判断△ABD的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=ex-e-x+ln($\sqrt{1+{x}^{2}}$+x),a=f($\frac{ln2}{2}$),b=f(2${\;}^{\frac{1}{2}}$),c=-f(2-π),下列结论正确的是(  )
A.a>b>cB.c>a>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=x2-2x+m(x∈R)有两个不同零点,并且不等式f(1-x)≥-1恒成立,则实数m的取值范围是(  )
A.(0,1)B.[0,1)C.(0,1]D.[0,1]

查看答案和解析>>

同步练习册答案