精英家教网 > 高中数学 > 题目详情

一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

(1)(2)506.25

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

前不久,社科院发布了2013年度“全国城市居民幸福排行榜”,北京市成为本年度最“幸福城”.随后,某师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后一位为叶):
指出这组数据的众数和中位数;
若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)人选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于分的次数为,求的分布列和数学期望..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

低碳生活,从“衣食住行”开始.在国内一些网站中出现了“碳足迹”的应用,人们可以由此计算出自己每天的碳排放量,如家居用电的二氧化碳排放量(千克)=耗电度数,家用天然气的二氧化碳排放量(千克)=天然气使用立方数等.某校开展“节能减排,保护环境,从我做起!”的活动,该校高一、六班同学利用假期在东城、西城两个小区进行了逐户的关于“生活习惯是否符合低碳排放标准”的调查.生活习惯符合低碳观念的称为“低碳家庭”,否则称为“非低碳家庭”.经统计,这两类家庭占各自小区总户数的比例数据如下:

(1)如果在东城、西城两个小区内各随机选择2个家庭,求这个家庭中恰好有两个家庭是“低碳家庭”的概率;
(2)该班同学在东城小区经过大力宣传节能减排的重要意义,每周“非低碳家庭”中有的家庭能加入到“低碳家庭”的行列中.宣传两周后随机地从东城小区中任选个家庭,记表示个家庭中“低碳家庭”的个数,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.
(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;
(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

爸爸和亮亮用4张扑克牌(方块2,黑桃4,黑桃5,梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.

(1)若爸爸恰好抽到了黑桃4.
①请把右面这种情况的树形图绘制完整;
②求亮亮抽出的牌的牌面数字比4大的概率.
(11)爸爸、亮亮约定,若爸爸抽到的牌的牌面数字比亮亮的大,则爸爸胜;反之,则亮亮赢,你认为这个游戏是否公平?如果公平,请说明理由,如果不公平,更换一张扑克牌使游戏公平.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.
(1)从袋中不放回地取球,求恰好取4次停止的概率P1
(2)从袋中有放回地取球.
①求恰好取5次停止的概率P2
②记5次之内(含5次)取到红球的个数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一个矩形由三个相同的小矩形拼凑而成(如图所示),用三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,求:

(1)3个矩形都涂同一颜色的概率;
(2)3个小矩形颜色都不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率.

查看答案和解析>>

同步练习册答案