【题目】如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.
(1)证明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱锥D′﹣ABCFE体积.
【答案】
(1)
证明:∵菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,
∴EF∥AC,且EF⊥BD,
又D′H⊥EF,
D′H∩DH=H,
∴EF⊥平面DD′H,
∵HD′平面D′HD,
∴EF⊥HD′,
∵EF∥AC,
∴AC⊥HD′;
(2)
若AB=5,AC=6,则AO=3,B0=OD=4,
∵AE= ,AD=AB=5,
∴DE=5﹣ = ,
∵EF∥AC,
∴ ,
∴EH= ,EF=2EH= ,DH=3,OH=4﹣3=1,
∵HD′=DH=3,OD′=2 ,
∴满足HD′2=OD′2+OH2,
则△OHD′为直角三角形,且OD′⊥OH,
即OD′⊥底面ABCD,
即OD′是五棱锥D′﹣ABCFE的高.
底面五边形的面积S= = =12+= ,则五棱锥D′﹣ABCFE体积V= SOD′= × ×2 =
【解析】(1)根据直线平行的性质以及线面垂直的判定定理先证明EF⊥平面DD′H即可.(2)根据条件求出底面五边形的面积,结合平行线段的性质证明OD′是五棱锥D′﹣ABCFE的高,即可得到结论.;本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.本题的难点在于证明OD′是五棱锥D′﹣ABCFE的高.考查学生的运算和推理能力.
【考点精析】通过灵活运用空间中直线与直线之间的位置关系,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点即可以解答此题.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直线坐标系xOy中,曲线C1的参数方程为 (t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=α0 , 其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).
(1)若,求的值;
(2)若记f(θ)=,θ∈[0,].当1≤λ≤2时,求f(θ)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.
(1)判断f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函数”,哪些不是,并说明理由;
(2)若函数g(x)=lnx(x∈[M,+∞))是“保三角形函数”,求M的最小值;
(3)若函数h(x)=sinx(x∈(0,A))是“保三角形函数”,求A的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 是的中点,过三点的平面交于, 为的中点,求证:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的周期为2,当x∈[0,2时,f(x)=2|x-1|-1,如果g(x)=f(x)-log3|x-2|,则函数y=g(x)的所有零点之和为( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com