精英家教网 > 高中数学 > 题目详情
1.已知二次函数f(x)满足f(x+1)-f(x)=-2x+1且f(2)=15.
(1)求函数f(x)的解析式;
(2)令g(x)=(2-2m)x-f(x);
①若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;
②求函数g(x)在x∈[0,2]的最小值.

分析 (1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.
(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,
①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;
②分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案.

解答 解:(1)设f(x)=ax2+bx+c,
∵f(2)=15,f(x+1)-f(x)=-2x+1,
∴4a+2b+c=15;a(x+1)2+b(x+1)+c-(ax2+bx+c)=-2x+1;
∴2a=-2,a+b=1,4a+2b+c=15,解得a=-1,b=2,c=15,
∴函数f(x)的表达式为f(x)=-x2+2x+15;
(2)∵g(x)=(2-2m)x-f(x)=x2-2mx-15的图象是开口朝上,且以x=m为对称轴的抛物线,
①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;
②当m≤0时,g(x)在[0,2]上为增函数,当x=0时,函数g(x)取最小值-15;
当0<m<2时,g(x)在[0,m]上为减函数,在[m,2]上为增函数,当x=m时,函数g(x)取最小值-m2-15;
当m≥2时,g(x)在[0,2]上为减函数,当x=2时,函数g(x)取最小值-4m-11;
∴函数g(x)在x∈[0,2]的最小值为$\left\{\begin{array}{l}-15,m≤0\\-{m}^{2}-15,0<m<2\\-4m-11,m≥2\end{array}\right.$

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知二次函数满足f(1+x)=f(1-x).则函数f(x)的解析式可能为(  )
A.f(x)=x2-2xB.f(x)=x2-1C.f(x)=x2-3x+2D.f(x)=x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.解关于x的不等式ax2-2x-2-a<0(a>-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数的二阶导数:
(1)y=x3-4x+$\frac{2}{x}$-1;
(2)y=ex•cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知角x的终边落在图示阴影部分区域,写出角x组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是(  )
A.(2,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=1ogax,g(x)=2loga(2x+2)(a>0且a≠1)
(1)判断函数h(x)=x+$\frac{1}{x}$(x>0)的单调性并证明:
(2)当x∈[1,2],且F(x)=g(x)-f(x)有最小值-2时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=ex+x-2,g(x)=lnx+x2-1,若实数a,b满足f(a)=0,g(b)=0,则(  )
A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,若在双曲线的右支上存在一点M,使得($\overrightarrow{OM}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}M}$=0 (其中O为坐标原点),且|$\overrightarrow{M{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{M{F}_{2}}$|,则双曲线的离心率为(  )
A.$\sqrt{5}$-1B.$\frac{\sqrt{3}+1}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案