精英家教网 > 高中数学 > 题目详情
已知直线l:2mx-y-8m-3=0和圆C:(x-3)2+(y+6)2=25.
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
分析:(1)由2mx-y-8m-3=0,知(2x-8)m-(y+3)=0,故
2x-8=0
y+3=0
,解得直线l恒过(4,-3),由点(4,-3)到圆心(3,-6)的距离d=
(4-3)2+(-3+6)2
=
10
<r=5,知不论m为何实数值,直线l与圆C总相交.不论m为何实数值,直线l与圆C总相交.
(2)由0≤d≤
10
,知d的最大值为
10
.根据平面几何知识可知:当圆心到直线l的距离最大时,直线l被圆C截得的线段长度最短.由此能求出直线l被圆C截得的线段的最短长度以及此时直线l的方程.
解答:(1)证明:∵2mx-y-8m-3=0,
∴(2x-8)m-(y+3)=0,
2x-8=0
y+3=0
,解得
x=4
y=-3

∴直线l恒过(4,-3),
∵点(4,-3)到圆心(3,-6)的距离d=
(4-3)2+(-3+6)2
=
10
<r=5,
故不论m为何实数值,直线l与圆C总相交.
(2)解:由(1)可知0≤d≤
10
,即d的最大值为
10

根据平面几何知识可知:当圆心到直线l的距离最大时,直线l被圆C截得的线段长度最短.
∴当d=
10
时,
线段(即弦长)的最短长度为
2
25-
10
p2
=2
15
.(9分)
将d=
10
代入①可得m=-
1
6

代入直线l的方程,
得直线被圆C截得最短线段时l的方程为x+3y+5=0.(12分)
点评:本题考查直线与圆相交的证明,考查直线被圆截得的线段的最短长度以及此时直线的方程.考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.
(1)m∈R时,证明l与C总相交; 
(2)m取何值时,l被C截得弦长最短,求此弦长.

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北冀州中学高一年级下学期期末考试文科数学(A卷) 题型:解答题

(本小题满分12分)已知直线l2mx-y-8m-3=0和
C:(x-3)2+(y+6)2=25.
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北冀州中学高一年级下学期期末考试文科数学(B卷) 题型:解答题

(本小题满分12分)已知直线l2mx-y-8m-3=0和

C:(x-3)2+(y+6)2=25.

(1)证明:不论m取什么实数,直线l与圆C总相交;

(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北冀州中学高一年级下学期期末考试文科数学(A卷) 题型:解答题

(本小题满分12分)已知直线l2mx-y-8m-3=0和

C:(x-3)2+(y+6)2=25.

(1)证明:不论m取什么实数,直线l与圆C总相交;

(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.

 

 

查看答案和解析>>

同步练习册答案