精英家教网 > 高中数学 > 题目详情
6.给出下列命题:
①若数列{an}为等差数列,Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n是等差数列;
②若数列{an}为等比数列,Sn为其前n项和,则Sn,S2n-Sn,S3n-S2n是等比数列;
③若数列{an},{bn}均为等差数列,则数列{an+bn}为等差数列;
④若数列{an},{bn}均为等比数列,则数列{an•bn}为等比数列
其中真命题的个数为(  )
A.1B.2C.3D.4

分析 ①设等差数列an的首项为a1,公差为d,则Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,即可判断出结论.
②取数列-1,1,-1,1,…,Sn可能为0,因此不成等比数列,即可判断出;
③设an=a1+(n-1)d1,bn=b1+(n-1)d2,则an+bn=(a1+b1)+(n-1)(d1+d2),即可判断出结论.
④设an=a1${q}_{1}^{n-1}$,bn=b1${q}_{2}^{n-1}$,则an•bn=a1b1$({q}_{1}{q}_{2})^{n-1}$,即可判断出结论.

解答 解:①设等差数列an的首项为a1,公差为d,则Sn=a1+a2+…+an,S2n-Sn=an+1+an+2+…+a2n=a1+nd+a2+nd+…+an+nd=Sn+n2d,同理:S3n-S2n=a2n+1+a2n+2+…+a3n=an+1+an+2+…+a2n+n2d=S2n-Sn+n2d,∴2(S2n-Sn)=Sn+(S3n-S2n),∴Sn,S2n-Sn,S3n-S2n是等差数列.正确.
②取数列-1,1,-1,1,…,Sn可能为0,因此不成等比数列,不正确;
③设an=a1+(n-1)d1,bn=b1+(n-1)d2,则an+bn=(a1+b1)+(n-1)(d1+d2),故数列{an+bn}为等差数列,正确.
④设an=a1${q}_{1}^{n-1}$,bn=b1${q}_{2}^{n-1}$,则an•bn=a1b1$({q}_{1}{q}_{2})^{n-1}$,因此数列{an•bn}为等比数列,正确.
其中真命题的个数为3.
故选:C.

点评 本题考查了等差数列与等比数列的定义及通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=4x+a•2x+b,
(1)若f(0)=1,f(-1)=-$\frac{5}{4}$,求f(x)的解析式;
(2)由(1)当0≤x≤2时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数据0.7,1,0.8,0.9,1.1的方差是0.02.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线x2-y2=1的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,PC⊥平面ABC,∠PAC=30°,∠ACB=45°,BC=2$\sqrt{2}$,PA⊥AB.
(1)求PC的长;
(2)若点M在侧棱PB上,且$\overrightarrow{BM}=λ\overrightarrow{MP}$,当λ为何值时,二面角B-AC-M的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将函数f(x)=$\sqrt{3}$sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则y=g(x)的一条对称轴是(  )
A.$x=-\frac{π}{6}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知AD是△ABC内角∠BAC的角平分线.
(1)用正弦定理证明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.平面内到定点F(0,1)和定直线l:y=-1的距离之和等于4的动点的轨迹为曲线C,关于曲线C的几何性质,给出下列四个结论:
①曲线C的方程为x2=4y;                                ②曲线C关于y轴对称  
③若点P(x,y)在曲线C上,则|y|≤2;          ④若点P在曲线C上,则1≤|PF|≤4
其中,所有正确结论的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,则二面角A-PB-E的大小为(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案