精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$的值域为(1,$\frac{2}{m}$),则实数m的值为$\sqrt{2}$.

分析 函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$=1+$\frac{m-1}{{e}^{x}+1}$,根据函数f(x)的值域为(1,$\frac{2}{m}$),可得2>m>1,x→-∞,1+$\frac{m-1}{{e}^{x}+1}$→$\frac{2}{m}$,即可得出.

解答 解:函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$=$\frac{{e}^{x}+1+m-1}{{e}^{x}+1}$=1+$\frac{m-1}{{e}^{x}+1}$,
∵函数f(x)的值域为(1,$\frac{2}{m}$),
∴2>m>1,x→-∞,1+$\frac{m-1}{{e}^{x}+1}$→$\frac{2}{m}$,
∴1+$\frac{m-1}{1}$=$\frac{2}{m}$,解得m=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了指数函数的单调性、极限的思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前n项和为Sn,且满足4Sn-1=an2+2an,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}({a}_{n}+2)}$,数列{bn}的前n项和为Tn,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的值域:
(1)y=$\frac{x}{x-4}$(0≤x≤6且x≠4);
(2)y=$\frac{3x}{2x-4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\frac{π}{4}$<α<$\frac{3π}{4}$,0<β<$\frac{π}{4}$,且cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{7}{25}$.
(I)求sin2α的值
(Ⅱ)求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$)和向量$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$).
(1)设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$-$\overrightarrow{b}$|,求f(x)的解析式;
(2)若命题p:“?x∈[0,π],f(x)≥k”为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线y=kx+1与圆(x-3)2+(y-2)2=9相交于A、B两点,若AB小于2,则k的取值范围是k<-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等腰△ABC中,AB=AC,|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=2$\sqrt{6}$,则△ABC面积的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系内,已知⊙O1:(x+2)2+y2=1,⊙O2:(x-2)2+y2=1,过平面内一点P分别作⊙O1和⊙O2的切线PM,PN,其中M,N为切点,且PM=$\sqrt{3}$PN,记△PMO1和△PNO2的面积分别为S1,S2,则(S1+S22的最大值为16+4$\sqrt{13}$+8$\sqrt{3}$+2$\sqrt{39}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.化简式子$\frac{2sin20°-cos10°}{cos80°}$的值是(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2D.2

查看答案和解析>>

同步练习册答案