分析 函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$=1+$\frac{m-1}{{e}^{x}+1}$,根据函数f(x)的值域为(1,$\frac{2}{m}$),可得2>m>1,x→-∞,1+$\frac{m-1}{{e}^{x}+1}$→$\frac{2}{m}$,即可得出.
解答 解:函数f(x)=$\frac{{e}^{x}+m}{{e}^{x}+1}$=$\frac{{e}^{x}+1+m-1}{{e}^{x}+1}$=1+$\frac{m-1}{{e}^{x}+1}$,
∵函数f(x)的值域为(1,$\frac{2}{m}$),
∴2>m>1,x→-∞,1+$\frac{m-1}{{e}^{x}+1}$→$\frac{2}{m}$,
∴1+$\frac{m-1}{1}$=$\frac{2}{m}$,解得m=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查了指数函数的单调性、极限的思想方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com