精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是
(1)求椭圆E的方程;
(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.
(1) ;(2)存在点满足题意.
(1)椭圆E长轴的一个端点为,所以可得,焦点在x轴上,然后再根据,可得,所以,
所以椭圆方程为.
(2)先假设存在点M符合题意,设AB:再与椭圆E的方程联立消y可得关于x的一元二次方程,再利用韦达定理代入,得到含有变量m,k的表达式,要注意与k无关,让k的系数为零,求出m值.
(1)根据条件可知椭圆的焦点在x轴,且

故所求方程为   ………………3分
(2)假设存在点M符合题意,设AB:代入得:
   ………………4分
………………6分
………10分
要使上式与K无关,则有,解得,存在点满足题意.…12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,抛物线的焦点到准线的距离与椭圆的长半轴相等,设椭圆的右顶点为在第一象限的交点为为坐标原点,且的面积为

(1)求椭圆的标准方程;
(2)过点作直线两点,射线分别交两点.
(I)求证:点在以为直径的圆的内部;
(II)记的面积分别为,问是否存在直线,使得?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P、Q是椭圆3x2+5y2=1上满足∠POQ=900的两个动点,则|OP|2+|OQ|2=(  )
A.8B.C.D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点轴的非负半轴上,点到短
轴端点的距离是4,椭圆上的点到焦点距离的最大值是6.
(1)求椭圆的标准方程和离心率
(2)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.经过点M(1,1)作直线l交椭圆于A、B两点,且M为AB的中点,则直线l方程为                       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上.
⑴求椭圆的方程;
⑵设是椭圆上的三点(异于椭圆顶点),且存在锐角,使
①试求直线的斜率的乘积;
②试求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,顺次连结椭圆的四个顶点,所得四边形的内切圆与长轴的两交点正好是长轴的两个三等分点,则椭圆的离心率等于(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案