精英家教网 > 高中数学 > 题目详情

已知是函数的一个极值点,其中
(1)求的关系式;
(2)求的单调区间;
(3)设函数函数g(x)= ;试比较g(x)与的大小。

(1)
(2) 当时,单调递减,在单调递增,在上单调递减.同理可得:当时,单调递增,在单调递减,在上单调递增
(3) 时 ,g(x) 时,  g(x)

解析试题分析:解(I)因为是函数的一个极值点,所以,即,所以 3分
(II)由(I)知,=…5分
时,有,当变化时,的变化如下表:





1



0

0

 
 
 
 
 
 

调调递减
极小值
单调递增
极大值
单调递减
故有上表知,当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若为定义域上的单调增函数,求实数的取值范围;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)当时,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,(1)分别求;(2)然后归纳猜想一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且当时,.现已画出函数轴左侧的图像,如图所示,并根据图像

(1)写出函数的增区间;
(2)写出函数的解析式;     
(3)若函数,求函数的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)时,求的极值;
(2)当时,讨论的单调性;
(3)证明:,其中无理数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)写出该函数的单调区间;
(2)若函数恰有3个不同零点,求实数的取值范围;
(3)若对所有恒成立,求实数n的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知,求证:;
(2)已知>0(i=1,2,3,…,3n),求证:
+++…+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)若对于任意的,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是函数的两个零点,函数的最小值为,记
(ⅰ)试探求之间的等量关系(不含);
(ⅱ)当且仅当在什么范围内,函数存在最小值?
(ⅲ)若,试确定的取值范围。

查看答案和解析>>

同步练习册答案