精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\frac{3}{2}$C.-3D.3

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求出最优解即可求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=-1}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1),
代入目标函数z=2x+y得z=2×2-1=3.
即目标函数z=2x+y的最大值为3,
故选:D

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知A、B、C是半径为1的球面上三个定点,且AB=AC=BC=1,高为$\frac{{\sqrt{6}}}{2}$的三棱锥P-ABC的顶点P位于同一球面上,则动点P的轨迹所围成的平面区域的面积是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体三视图如图所示,则该几何体的体积为(俯视图中弧线是$\frac{1}{4}$圆弧)(  )
A.4-πB.π-2C.1-$\frac{π}{2}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{a}$=($\frac{\sqrt{3}}{3}$sinx,2cosx),$\overrightarrow{b}$=(3,-$\frac{1}{2}$),x∈R.
(1)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,试求f(x)的值域;
(2)若x=$\frac{π}{3}$,且满足2$\overrightarrow{a}$-$\overrightarrow{b}$与$λ\overrightarrow{a}$+$\overrightarrow{b}$相互垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=3+x+2$\sqrt{x+1}$的最小值是(  )
A.4+2$\sqrt{2}$B.1C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.

(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求三棱锥B1-EBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数在其定义域内既是奇函数又是减函数的是(  )
A.y=-lnxB.y=x${\;}^{\frac{1}{3}}$C.y=tanxD.y=e-x-ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(-2-x),且函数y=f(x-1)为偶函数,f(-3)=e,则不等式f(x)<ex的解集为(1,+∞).

查看答案和解析>>

同步练习册答案