【题目】如图, 是边长为3的正方形,平面,,,BE与平面所成角为.
(Ⅰ)求证:平面 ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点M在线段BD上,且平面BEF,求的长.
【答案】(Ⅰ)见证明;(Ⅱ)(Ⅲ)
【解析】
(Ⅰ)利用线面垂直的判定定理即可证得题中的结论;
(Ⅱ)建立空间直角坐标系,利用平面的法向量可得二面角的余弦值;
(Ⅲ)结合(Ⅱ)中的结果和空间向量的结论求得点M的坐标即可求得的长.
(Ⅰ)因为平面,所以,
因为是正方形,所以,
又BD,DE交于点E,从而平面.
(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系如图所示.
因为BE与平面所成角为,即
所以.由可知,
则,,,,,
所以,
设平面BEF的法向量为,则,
即,令,则
因为平面,所以为平面的法向量,,
所以.
因为二面角为锐角,所以二面角的余弦值为.
(Ⅲ)点M是线段BD上一个动点,设.则,
因为平面BEF,所以,
即,解得.
此时,点M坐标为,,符合题意.
科目:高中数学 来源: 题型:
【题目】 下列结论错误的是
A. 命题:“若,则”的逆否命题是“若,则”
B. “”是“”的充分不必要条件
C. 命题:“, ”的否定是“, ”
D. 若“”为假命题,则均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,∥,,平面平面,且.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知点在棱上,且异面直线与所成角的余弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】口袋里装有编号为1,2,3,4的四个小球,有放回的抽取两次,记录两次取到小球的编号分别为,.奖励规则如下:
①若,则奖励玩具一个;
②若,则奖励水杯一个;
③其余情况奖励饮料一瓶.
小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,直线与轴的交点为,与的交点为,且.
(Ⅰ)求的方程;
(Ⅱ)设过定点的直线与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(1)求的轨迹
(2)过轨迹上任意一点作圆的切线,设直线的斜率分别是,试问在三个斜率都存在且不为0的条件下, 是否是定值,请说明理由,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为2的菱形中,,于点,将沿折起到的位置,使,如图2.
(1)求证:平面;
(2)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若关于x的不等式ax2﹣3x+2>0(a∈R)的解集为{x|x<1或x>b},求a,b的值;
(2)解关于x的不等式ax2﹣3x+2>5﹣ax(a∈R).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com