精英家教网 > 高中数学 > 题目详情

已知体积为的正三棱锥的外接球的球心为O,满足, 则该三棱锥外接球的体积为              .高☆考♂资♀源?网

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

正方体ABCDA1B1C1D1E、F分别是AA1AB的中点,OB1D1的中点,则EFOB所成的角是        、直线和平面所成的角为        .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方形中,过对角线的一个平面交于E,交于F,则
① 四边形一定是平行四边形
② 四边形有可能是正方形
③ 四边形在底面ABCD内的投影一定是正方形
④ 四边形有可能垂直于平面
以上结论正确的为    。(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知两条相交直线∥平面,则的位置关系是        

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.

(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求BP的长;
(Ⅲ)求直线AP与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.
(1)求证:平面
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中-A BC中,AB  AC,AB=AC=2,=4,点D是BC的中点.
(1)求异面直线所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

边长为2的正方形ABCD在平面α内的射影是EFCD,如果AB与平面α的距离为,则AC与平面α所成角的大小是            

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

四面体ABCD中,有如下命题:①若AC⊥BD,AB⊥CD,则AD⊥BC;
②若E、F、G分别是BC、AB、CD的中点,则∠FEG的大小等于异面直线AC与BD所成角的大小;
③若四面体ABCD有内切球,则
④若四个面是全等的三角形,则ABCD为正四面体。
其中正确的是:  (填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案