精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱锥ABCD中,AB⊥平面BCDCD⊥BD .

1)求证:CD⊥平面ABD

2)若ABBDCD1MAD中点,求三棱锥AMBC的体积.

【答案】1)详见解析(2

【解析】试题分析:()证明:CD⊥平面ABD,只需证明AB⊥CD;()利用转换底面,VA-MBC=VC-ABM=SABMCD,即可求出三棱锥A-MBC的体积

试题解析:(1∵AB⊥平面BCDCD平面BCD

∴AB⊥CD.

∵CD⊥BDAB∩BDB

AB平面ABDBD平面ABD

∴CD⊥平面ABD.

2)法一:由AB⊥平面BCD,得AB⊥BD

∵ABBD1∴SABD.

∵MAD的中点,

∴SABMSABD

由(1)知,CD⊥平面ABD

三棱锥CABM的高hCD1

因此三棱锥AMBC的体积

VAMBCVCABMSABM·h.

法二:由AB⊥平面BCD知,平面ABD⊥平面BCD,又平面ABD∩平面BCDBD,如图,过点MMN⊥BDBD于点N,则MN⊥平面BCD,且MNAB,又CD⊥BDBDCD1

∴SBCD.

三棱锥AMBC的体积

VAMBCVABCDVMBCD

AB·SBCDMN·SBCD

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

如图,四边形是正方形,均是以为直角顶点的等腰直角三角形,点的中点,点是边上的任意一点.

1)求证:

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCDA1B1C1D1中,EF分别为B1C1A1D1的中点.求证:平面ABB1A1与平面CDFE相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[5060

[6070

[7080

[8090

[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

3)现用分层抽样的方法从第345组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在正方体ABCD-A1B1C1D1EFPQMN分别是棱ABADDD1BB1A1B1A1D1的中点.求证

(1)直线BC1∥平面EFPQ.

(2)直线AC1⊥平面PQMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,直线的参数方程为t为参数),PQ分别为直线x轴、y轴的交点,线段PQ的中点为M

)求直线的直角坐标方程;

)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标和直线OM的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.如图在三棱锥V-ABCVO⊥平面ABCO∈CDVA=VBAD=BD则下列结论中不一定成立的是 (  )

A. AC=BC

B. VC⊥VD

C. AB⊥VC

D. SVCD·AB=SABC·VO

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知e为自然对数的底数,设函数,则( ).

A. k=1时,f(x)在x=1处取到极小值 B. k=1时,f(x)在x=1处取到极大值

C. k=2时,f(x)在x=1处取到极小值 D. k=2时,f(x)在x=1处取到极大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 t为参数),C2 (θ为参数),

(Ⅰ)当α= 时,求C1与C2的交点坐标;

(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

同步练习册答案