精英家教网 > 高中数学 > 题目详情

【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:

针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( )

A. 获得A等级的人数减少了B. 获得B等级的人数增加了1.5倍

C. 获得D等级的人数减少了一半D. 获得E等级的人数相同

【答案】B

【解析】

设出两年参加考试的人数,然后根据图表计算两年等级为A,B,C,D,E的人数,由此判断出正确选项.

年参加考试人,则年参加考试人,根据图表得出两年各个等级的人数如下图所示:

年份

A

B

C

D

E

2016

2018

由图可知A,C,D选项错误,B选项正确,故本小题选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.

1)求曲线的轨迹方程;

2)过点分别作射线交曲线于不同的两点,且.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的件工艺品测得重量(单位:)数据如下表:

分组

频数

频率

合计

(1)求出频率分布表中实数的值;

(2)若从仿制的件工艺品重量范围在的工艺品中随机抽选件,求被抽选件工艺品重量均在范围中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是(

A.命题pq为真,则恰有一个为真命题

B.命题已知,则的充分不必要条件

C.命题都有,则,使得

D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉有九省通衢之称,也称为江城,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.

1)为了解·劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:

现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求

2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3型游船供游客乘坐观光.2010201910年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:

劳动节当日客流量

频数(年)

2

4

4

以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.

该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:

劳动节当日客流量

型游船最多使用量

1

2

3

若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若上单调递增,求实数的取值范围;

(2)当时,若实数满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在轴上的椭圆经过点,椭圆的离心率为是椭圆的左、右焦点,为椭圆上任意点.

1)若面积为,求的值;

2)若点的中点(为坐标原点),过且平行于的直线交椭圆两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且.

(1) 证明数列是等比数列,并求出数列的通项公式;

(2) ,求数列的前n项和.

查看答案和解析>>

同步练习册答案