【题目】已知函数的最小正周期是.
(1)求ω的值;
(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.
【答案】(1) (2) 函数f(x)的最大值是2+,此时x的集合为{x|x= +,k∈Z}.
【解析】试题分析析:本题是函数性质问题,可借助正弦函数的图象与性质去研究,根据周期公式可以求出,当函数的解析式确定后,可以令, ,根据正弦函数的最大值何时取得,可以计算出为何值时,函数值取得的最大值,进而求出的值的集合.
试题解析:
(1)∵f(x)=sin( +2(x∈R,ω>0)的最小正周期是,∴,所以ω=2.
(2)由(1)知,f(x)=sin +2.
当4x+=+2kπ(k∈Z),即x=+(k∈Z)时,sin取得最大值1,
所以函数f(x)的最大值是2+,此时x的集合为{x|x=+,(k∈Z)}.
科目:高中数学 来源: 题型:
【题目】设数列{an}满足:a1=1,an+1=3an , n∈N+ .
(1)求{an}的通项公式及前n项和Sn;
(2)已知{bn}是等差数列,Tn为前n项和,且b1=a2 , b3=a1+a2+a3 , 求T20 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为对考生的月考成绩进行分析,某地区随机抽查了名考生的成绩,根据所得数据画了如下的样本频率分布直方图.
(1)求成绩在的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这人中用分层抽样方法抽取出人作出进一步分析,则成绩在的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asin B=b.
(1)求角A的大小; (2)若a=6,b+c=8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ( )的左右焦点分别为, ,离心率为,点在椭圆上, , ,过与坐标轴不垂直的直线与椭圆交于, 两点, 为, 的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,且,求直线所在的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形为梯形, , 平面, , , , 为中点.
(1)求证:平面平面;
(2)线段上是否存在一点,使平面?若有,请找出具体位置,并进行证明:若无,请分析说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com