精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(x+60°)+2sin(x-60°)-
3
cos(120°-x)

(1)求f(30°)、f(60°)的值;
(2)由(1)你能得到什么结论?并给出你的证明.
分析:(1)把x=30°和x=60°分别代入函数解析式,利用特殊角的三角函数值求得答案.
(2)推断出f(x)=0,利用两角和公式把函数解析式展开后化简整理即可.
解答:解:(1)f(30°)=sin90°+2sin(-30°)-
3
cos90°
=1-1+0=0,
f(60°)=sin120°+2sin0°-
3
cos60°=
3
2
+0-
3
×
1
2
=0;
(2)由(1)得f(x)=0,证明如下:f(x)=sin(x+60°)+2sin(x-60°)-
3
cos(120°-x)

=sinxcos60°+cosxsin60°+2(sinxcos60°-cosxsin60°)-
3
(cos120°cosx+sin120°sinx)
=
1
2
sinx+
3
2
cosx+2(
1
2
sinx-
3
2
cosx)-
3
(-
1
2
cosx+
3
2
sinx)

=
1
2
sinx+
3
2
cosx+sinx-
3
cosx+
3
2
cosx-
3
2
sinx)
=0
即f(x)=0.
点评:本题主要考查了三角函数的恒等变换与化简求值.要求考生能熟练记忆三角函数的基本公式,并能灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案