精英家教网 > 高中数学 > 题目详情
(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于
不存在
不存在
分析:由题意设直线l的方程为my=x+1,联立
my=x+1
y2=4x
得到y2-4my+4=0,△=16m2-16=16(m2-1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得y0=
y1+y2
2
=2m,x0=my0-1=2m2-1.Q(2m2-1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.
解答:解:由题意设直线l的方程为my=x+1,联立
my=x+1
y2=4x
得到y2-4my+4=0,△=16m2-16=16(m2-1)>0.
设A(x1,y1),B(x2,y2),Q(x0,y0).
∴y1+y2=4m,∴y0=
y1+y2
2
=2m,∴x0=my0-1=2m2-1.
∴Q(2m2-1,2m),
由抛物线C:y2=4x得焦点F(1,0).
∵|QF|=2,∴
(2m2-2)2+(2m)2
=2
,化为m2=1,解得m=±1,不满足△>0.
故满足条件的直线l不存在.
故答案为不存在.
点评:本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江)设
e1
e2
为单位向量,非零向量
b
=x
e1
+y
e2
,x、y∈R.若
e1
e2
的夹角为30°,则
|x|
|
b
|
的最大值等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则ab等于
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=
5
3
,Dη=
5
9
,求a:b:c.

查看答案和解析>>

同步练习册答案