精英家教网 > 高中数学 > 题目详情

【题目】如图,两个正方形ABCD和ADEF所在平面互相垂直,设M、N分别是BD和AE的中点,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面.其中假命题的个数为( )

A.4
B.3
C.2
D.1

【答案】D
【解析】解:∵两个正方形ABCD和ADEF所在平面互相垂直,M、N分别是BD和AE的中点,

取AD的中点G,连接MG,NG,易得AD⊥平面MNG,进而得到AD⊥MN,故①正确;

连接AC,CE,根据三角形中位线定理,可得MN∥CE,由线面平行的判定定理,可得②MN∥面CDE及③MN∥CE正确,④MN、CE错误;

∴其中假命题的个数为:1

所以答案是:D

【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知m∈R,n∈R,并且m+3n=1,则mem+3ne3n的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn , 令an=lgxn , 则a1+a2+…+a99的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个不同的球,4个不同的盒子,把球全部放入盒子内.
(1)共有几种放法?
(2)恰有1个空盒,有几种放法?
(3)恰有2个盒子不放球,有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)满足 f(x)g(x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函数,给出三组函数: ①f(x)=sin x,g(x)=cos x;
②f(x)=x+1,g(x)=x﹣1;
③f(x)=x,g(x)=x2
其中为区间[﹣1,1]上的正交函数的组数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2﹣bx+c>0的解集为{x|﹣2<x<3},求不等式cx2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木AE的高度H(m),垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三点共线),试根据上述测量方案,回答如下问题:

(1)若测得α=60°、β=30°,试求H的值;
(2)经过分析若干次测得的数据后,大家一致认为适当调整标杆到树木的距离d(单位:m),使α与β之差较大时,可以提高测量精确度.
若树木的实际高度为8m,试问d为多少时,α﹣β最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果曲线2|x|﹣y﹣4=0与曲线x2+λy2=4(λ<0)恰好有两个不同的公共点,则实数λ的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是一个三棱台ABCABC′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.

查看答案和解析>>

同步练习册答案