精英家教网 > 高中数学 > 题目详情
等差数列{ an}中a3=7,a1+a2+a3=12,记Sn为{an}的前n项和,令bn=anan+1,数列{
1
bn
}的前n项和为Tn
(1)求an和Sn
(2)求证:Tn
1
3

(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
分析:(1)设数列{an}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,解得a1=1,d=3,由此能求出an和Sn
(2)由bn=anan+1=(3n-2)(3n+1),知
1
bn
=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)
,由此能够证明Tn
1
3

(3)由(2)知,Tn=
n
3n+1
,故T1=
1
4
Tm=
m
3m+1
Tn=
n
3n+1
,由T1,Tm,Tn成等比数列,能够推导出存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
解答:解:(1)设数列{an}的公差为d,
由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,
解得a1=1,d=3,
∴an=3n-2,
Sn=n+
n(n-1)
2
×3
=
3n2-n
2

(2)∵bn=anan+1=(3n-2)(3n+1),
1
bn
=
1
(3n-2)(3n+1)
=
1
3
(
1
3n-2
-
1
3n+1
)

Tn=
1
3
(1-
1
4
+
1
4
-
1
7
+
1
7
-
1
11
+…+
1
3n-5
-
1
3n-2
+
1
3n-2
-
1
3n+1
)

=
1
3
(1-
1
3n+1
)<
1
3

(3)由(2)知,Tn=
n
3n+1
,∴T1=
1
4
Tm=
m
3m+1
Tn=
n
3n+1

∵T1,Tm,Tn成等比数列,
(
m
3m+1
)
2
=
1
4
×
n
3n+1

6m+1
m2
=
3n+4
n

当m=1时,7=
3n+4
n
,n=1,不合题意;
当m=2时,
13
4
=
3n+4
n
,n=16,符合题意;
当m=3时,
19
9
=
3n+4
n
,n无正整数解;
当m=4时,
25
16
=
3n+4
n
,n无正整数解;
当m=5时,
31
25
=
3n+4
n
,n无正整数解;
当m=6时,
37
36
=
3n+4
n
,n无正整数解;
当m≥7时,m2-6m-1=(m-3)2-10>0,
6m+1
m2
<1
,而
3n+4
n
=3+
4
n
>3

所以,此时不存在正整数m,n,且7<m<n,使得T1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T1,Tm,Tn成等比数列.
点评:本题考查数列的通项公式和前n项和的求法,考查不等式的证明,考查正整数的求法.考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列的前13项之和为
26
26

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足
9
11
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
19
21
(n∈N*)
的所有n值的和为
35
35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足数学公式的所有n值的和为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足
9
11
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
19
21
(n∈N*)
的所有n值的和为______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省六校联盟高三(下)回头考数学试卷(文科)(解析版) 题型:填空题

在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足的所有n值的和为   

查看答案和解析>>

同步练习册答案