精英家教网 > 高中数学 > 题目详情
直线y=与曲线y=sinx在y轴右侧的第一、二、三个交点依次为A、B、C,若B分的比为λ,则λ=
[     ]
A、
B、
C、
D、2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:湖南省衡阳市八中2011届高三第二次月考理科数学试题 题型:044

设直线l∶y=g(x),曲线S∶y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.

(1)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.

(2)观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源:湖南省衡阳市八中2011届高三第二次月考文科数学试题 题型:044

设直线l∶y=g(x),曲线S∶y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.

(1)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.

(2)观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源:2009年湖北省八市高三三月调考数学试卷(文科)(解析版) 题型:解答题

已知A(-1,0)、B(3,0),M、N是圆O:x2+y2=1上的两个动点,且M、N关于x轴对称,直线AM与BN交于P点.
(1)求P点的轨迹C的方程;
(2)设动直线l:y=k(x+)与曲线C交于S、T两点.求证:无论k为何值时,以动弦ST为直径的圆总与定直线x=-相切.

查看答案和解析>>

科目:高中数学 来源:2009年湖北省八市高三三月调考数学试卷(理科)(解析版) 题型:解答题

已知A(-1,0)、B(3,0),M、N是圆O:x2+y2=1上的两个动点,且M、N关于x轴对称,直线AM与BN交于P点.
(1)求P点的轨迹C的方程;
(2)设动直线l:y=k(x+)与曲线C交于S、T两点.求证:无论k为何值时,以动弦ST为直径的圆总与定直线x=-相切.

查看答案和解析>>

同步练习册答案