精英家教网 > 高中数学 > 题目详情
4.已知三角形的顶点A(-5,0),B(3,-3),C(0,2),试求:
(1)BC边所在直线的方程;
(2)AC边上的高所在直线的方程.

分析 (1)根据三角形的顶点坐标求出斜率kBC,由斜截式求出直线BC的方程;
(2)求出AC边所在直线的斜率与AC边上的高的斜率,由点斜式写出高所在直线的方程即可.

解答 解:(1)∵三角形的顶点A(-5,0),B(3,-3),C(0,2),
∴BC边所在直线的斜率为kBC=$\frac{2-(-3)}{0-3}$=-$\frac{5}{3}$,
又BC边所在直线在y轴上的截距为2,
∴BC边所在直线方程为y=-$\frac{5}{3}$x+2,
即5x+3y-6=0;
(2)∵AC边所在直线的斜率为kAC=$\frac{2-0}{0-(-5)}$=$\frac{2}{5}$,
∴AC边上的高的斜率为k=-$\frac{5}{2}$,
∴AC边上的高的直线的方程为y+3=-$\frac{5}{2}$(x-3),
即5x+2y-9=0.

点评 本题考查了求直线方程的应用问题,也考查了直线的垂直与斜率之间的关系,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在直角三角形ABC中,C=90°,B=30°,AB=4,M是AB的中点,将三角形ACM沿CM翻折成直二面角,则三棱锥A-CBM的外接球的表面积为(  )
A.$\frac{52π}{3}$B.$\frac{18π}{5}$C.$\frac{14π}{3}$D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.f(x)=-$\sqrt{x+1}$B.f(x)=${(\frac{1}{2})}^{x}$C.f(x)=lnx+2D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn=n2+2n(n∈N+),数列{bn}的前n项和Tn=2n-1(n∈N+).
(1)求数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和;
(2)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x=27,y=64.化简并计算$\frac{5{x}^{-\frac{2}{3}}{y}^{\frac{1}{2}}}{(-\frac{1}{4}{x}^{-1}{y}^{\frac{1}{2}})(-\frac{5}{6}{x}^{\frac{1}{3}}{y}^{-\frac{1}{6}})}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆心在第一象限的圆过点P(-4,3),圆心在直线2x-y+1=0上,且半径为5,则这个圆的方程为(x-1)2+(y-3)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=$\left\{\begin{array}{l}{\frac{x-3a-1}{x-2},x<1}\\{-{x}^{2}-2(a-1)x-\frac{1}{6},x≥1}\end{array}\right.$是定义在(-∞,+∞)上是减函数,则a的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{3}$]B.[0,$\frac{1}{3}$]C.[0,$\frac{1}{3}$)D.[$\frac{1}{6}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆ρ=2,直线ρcosθ=4,过极点作射线交圆于点A,交直线于点B,当射线以极点为中心转动时,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设n∈N*,圆Cn:(x-$\frac{1}{n}$)2+(y-1)2=$\frac{{4}^{n+1}-1}{{4}^{n+1}+2}$的面积为Sn,则$\underset{lim}{n→∞}$Sn=π.

查看答案和解析>>

同步练习册答案