精英家教网 > 高中数学 > 题目详情
9.在△ABC中,内角A、B、C的对边分别为a、b、c,若20sinA•$\overrightarrow{BC}$+15sinB•$\overrightarrow{CA}$+12sinC•$\overrightarrow{AB}$=$\overrightarrow{0}$,则△ABC的形状是直角三角形.

分析 由条件利用正弦定理可得20a•$\overrightarrow{BC}$+15b•$\overrightarrow{CA}$+12c•$\overrightarrow{AB}$=$\overrightarrow{0}$,化简可得可得15b-20a=0,且12c-20a=0,求得c2-b2=a2,故△ABC为直角三角形.

解答 解:△ABC中,由20sinA•$\overrightarrow{BC}$+15sinB•$\overrightarrow{CA}$+12sinC•$\overrightarrow{AB}$=$\overrightarrow{0}$,
利用正弦定理得20a•$\overrightarrow{BC}$+15b•$\overrightarrow{CA}$+12c•$\overrightarrow{AB}$=$\overrightarrow{0}$,
又$\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=-(\overrightarrow{AB}+\overrightarrow{CA})$,
故(15b-20a)$\overrightarrow{CA}$+(12c-20a)$\overrightarrow{AB}$=$\overrightarrow{0}$.
由$\overrightarrow{CA}$,$\overrightarrow{AB}$为不共线向量,可得15b-20a=0,且12c-20a=0,
所以b=$\frac{4}{3}$a,c=$\frac{5}{3}$a,从而c2-b2=a2,故△ABC为直角三角形.
故答案为:直角三角形.

点评 本题主要考查两个向量的数量积的运算,正弦定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,已知△ABC是边长为4的正三角形,D是BC的中点,E,F分别是边AB,AC上的点,且∠EDF=$\frac{π}{3}$,设∠BDE=θ$(\frac{π}{6}<θ<\frac{π}{2})$.
(Ⅰ)试将线段DF的长表示为θ的函数;
(Ⅱ)设△DEF的面积为S,求S=f(θ)的解析式,并求f(θ)的最小值;
(Ⅲ)若将折线BE-ED-DF-FC绕直线BC旋转一周得到空间几何体,试问:该几何体的体积是否有最小值?若有,求出它的最小值;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.掷两颗骰子,出现的点数之和是6的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{12}$C.$\frac{5}{21}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.两台车床加工同一种机械零件如表:
 合格品次品总计
甲机床加工的零件数35540
乙机床加工的零件数501060
总计8515100
从这100个零件中任取一个零件,取得的零件是甲机床加工的合格品的概率是$\frac{7}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=tanx在区间($\frac{π}{2}$,m)上是增函数,则实数m的取值范围是( $\frac{π}{2}$,$\frac{3π}{2}$ ).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在由0,1,2,3,4,这5个数字组成数字不重复的五位数中,从小到大排列的第86个数是42031.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2]时,f(x)=log8(x+1),求f(-2013)+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.高三年级某6个班联合到集市购买了6根竹竿,作为班旗的旗杆之用,它们的长度分别为3.8,4.3,3.6,4.5,4.0,4.1(单位:米).
(1)若从中随机抽取两根竹竿,求长度之差不超过0.5米的概率;
(2)若长度不小于4米的竹竿价格为每根10元,长度小于4米的竹竿价格为每根a元.从这6根竹竿中随机抽取两根,若这两根竹竿总价的期望为18元,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某少数民族的刺绣有着悠久的历史,图中(1)、(2)、(3)、(4)为她们刺锈最简单的四个图案,这些图案都是由小正方向构成,小正方形数越多刺锈越漂亮,向按同样的规律刺锈(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形

(1)求f(6)的值
(2)求出f(n)的表达式
(3)求证:1≤$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案