精英家教网 > 高中数学 > 题目详情

【题目】一种电脑屏幕保护画面,只有符号“”和“”随机地反复出现,每秒钟变化一次,每次变化只出现“”和“”之一,其中出现“”的概率为,出现“”的概率为,若第次出现“”,则记;若第次出现“”,则记,记.

1)若,求的分布列及数学期望;

2)若,求=1234)的概率.

【答案】1)见解析(2

【解析】

1可取,计算概率得到分布列,计算数学期望得到答案.

2)根据题意考虑第一、三秒出现“”和第一、二秒出现“”,第三秒出现“”两种情况,计算得到答案.

1)由题意得可取

的分布列如下:

.

2)当时,即前八秒出现“5次和“3次,

又已知=1234),

若第一、三秒出现“”,则其余六秒可任意出现三次“”;

若第一、二秒出现“”,则第三秒出现“”,则后五秒可任出现“”三次,

故概率为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,则下列四个命题正确的是(

A.直线BC与平面所成的角等于B.C到面的距离为

C.两条异面直线所成的角为D.三棱柱外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好.由测量结果得到如下频率分布直方图:

(Ⅰ)求,并试估计这200盒产品的该项指标的平均值;

(Ⅱ)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为:合格、优良、优秀三个等级,其中为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.

①求产品该项指标值的优秀率;

②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年8月18日,举世瞩目的第18届亚运会在印尼首都雅加达举行,为了丰富亚运会志愿者的业余生活,同时鼓励更多的有志青年加入志愿者行列,大会主办方决定对150名志愿者组织一次有关体育运动的知识竞赛(满分120分)并计划对成绩前15名的志愿者进行奖励,现将所有志愿者的竞赛成绩制成频率分布直方图,如图所示,若第三组与第五组的频数之和是第二组的频数的3倍,试回答以下问题:

(1)求图中的值;

(2)求志愿者知识竞赛的平均成绩;

(3)从受奖励的15人中按成绩利用分层抽样抽取5人,再从抽取的5人中,随机抽取2人在主会场服务,求抽取的这2人中其中一人成绩在分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80,估计的概率;

(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请在答题卡上将列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

参考公式及数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用1,2,…,8这八个数码所组成的 全部无重复数字的八位数中,能被11整除的有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为直线与曲线交于两点.

(1)求直线l的普通方程和曲线的直角坐标方程;

(2)已知点的极坐标为,的值.

查看答案和解析>>

同步练习册答案