精英家教网 > 高中数学 > 题目详情
16.已知关于实数x,y的方程组$\left\{\begin{array}{l}{{x}^{3}+{y}^{3}=2}\\{y=kx+d}\end{array}\right.$没有实数解,则实数k,d的取值范围为k=-1,d≤0或d>2.

分析 法一:消去y后,化简方程,利用方程的解的情况,讨论求解即可.
法二:转化方程组的两个方程为函数图象的交点问题,作出函数的图象,求解即可.

解答 解:法一:将y=kx+d代入x3+y3=2得:
x3+(kx+d)3-2=0 无解,
展开得:
(1+k3)x3+3k2dx2+3kd2x+d3-2=0,
若k≠-1,则这是三次方程,至少有一个实根,不符题意;
若k=-1,方程化为:3dx2-3d2x+d3-2=0,
若d=0,则方程化为-2=0,矛盾;满足题意.
若d≠0,这是二次方程,无解则判别式<0,得:(3d22-4*3d(d3-2)<0,即:d(-d3+8)<0,得d>2或d<0.
综合得:k=-1,d<0或d>2.
法二关于实数x,y的方程组$\left\{\begin{array}{l}{{x}^{3}+{y}^{3}=2}\\{y=kx+d}\end{array}\right.$没有实数解,
也就是$\left\{\begin{array}{l}y=\root{3}{{2-x}^{3}}\\ y=kx+d\end{array}\right.$没有实数解,
在平面直角坐标系中,画出两个函数的图象如图:
可知:两个函数没有交点,k=-1,d≤0或d>2.
故答案为:k=-1,d≤0或d>2.

点评 本题考查函数的图象的作法,考查转化思想以及计算能力,是难度比较大的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x3+3ax2+3bx+8c.
(1)若函数f(x)在x=1及x=2时取到极值,求实数a和b的值;
(2)若函数f(x)在x=1时取到极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cosα=$\frac{\sqrt{5}}{5}$,则sinα的值为±$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在数列{an}中,a1=1,an+1=3an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个不共线的向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+m$\overrightarrow{b}$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,若A、B、C三点共线,则m的值为:6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<$\frac{π}{2}$)的图象在y轴右侧的第一个最高点为P($\frac{1}{3}$,2),在y轴右侧与x轴的第一个交点为R($\frac{5}{6}$,0).
(1)求函数y的解析式;
(2)已知方程f(x)-m=0在区间[-$\frac{1}{2},\frac{2}{3}}$]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设x1、x2是关于x的二次方程x2-2kx+1-k2=0的两个实根,k为实数,则$x_1^2+x_2^2$的最小值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在当今社会,随科技的进步,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格x(单位:元/套)满足的关系式y=$\frac{a}{x-2}$+4(x-6)2,其中2<x<6,a为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(Ⅰ)求a的值;
(Ⅱ)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x的值,使网校每日销售套题所获得的利润最大.(保留1位小数)

查看答案和解析>>

同步练习册答案