精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ex
(Ⅰ)证明:当x≠0时,(1-x)f(x)<1;
(Ⅱ)证明:当a≠b时,$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

分析 (Ⅰ)先构造函数g(x)=(1-x)f(x),根据导数和函数最值的关系即可证明;
(Ⅱ)不防设a<b,记g(x)=[f(x)+f(a)](x-a)-2[f(x)-f(a)],分别两次求导,求出函数的最值,即可证明.

解答 证明:(Ⅰ)设g(x)=(1-x)f(x)=(1-x)ex
∴g′(x)=-xex
当g′(x)>0时,即x<0,函数g(x)单调递增,
当g′(x)<0时,即x>0,函数g(x)单调递减,
∴g(x)max≥g(0)=1,
∴当x≠0时,(1-x)f(x)<1;
(Ⅱ)不防设a<b
记g(x)=[f(x)+f(a)](x-a)-2[f(x)-f(a)],x≥a
∴g'(x)=f'(x)(x-a)+[f(x)+f(a)]-2f'(x),
=f'(x)(x-a)-[f(x)-f(a)],
∴g″(x)=f″(x)(x-a)+f'(x)-f'(x)=f(x)(x-a)>0,
∴g'(x)在x>a上单调增加,
则g'(x)>g'(a)=0,
∴g(x)在x>a上单调增加,
又g(x)可在x=a处连续,
∴g(x)>g(a)=0,
即[f(x)+f(a)](x-a)-2[f(x)-f(a)]>0,
特别的取x=b,[f(b)+f(a)](b-a)-2[f(b)-f(a)]>0,
整理得$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$,
问题得以证明.

点评 本题考查了导数和函数的最值得关系,以及转化思想,构造函数是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知i,j,k是空间直角坐标系O-xyz的单位正交基底,并且$\overrightarrow{AB}$=-i+j-k,则B点的坐标为(  )
A.(-1,1,-1)B.(-i,j,-k)C.(1,-1,-1)D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=lnx+x与函数$g(x)=\frac{b}{x}+{x^2}$有交点,则实数b的取值范围是(  )
A.(-∞,1]B.(-∞,0]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}的前n项和为Sn,a1=2,an+1=Sn+n.
(1)写出a2,a3,a4的值,并求{an}的通项公式;
(2)正项等差数列{bn}的前n项和为Tn,且T3=9,并满足a1+b1,a2+b2,a3+$\frac{1}{2}$b3,成等比数列.
(i)求数列{bn}的通项公式
(ii)设Bn=$\frac{1}{{b}_{1}^{2}}$+$\frac{1}{{b}_{2}^{2}}$+…+$\frac{1}{{b}_{n}^{2}}$,试确定Bn与$\frac{3}{4}$的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC的内角A、B、C所对应的边分别为a,b,c,且asinB-$\sqrt{3}$bcosA=0
(1)求角A;
(Ⅱ)若$\overrightarrow{AB}$2+$\overrightarrow{AC}$•$\overrightarrow{BC}$-$\overrightarrow{BC}$2=4,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的奇函数f(x),当x∈(-∞,0)时xf(x)递减,若a=3f(3),b=(logπ3)•f(logπ3),c=-2f(-2),则a,b,c的大小关系(  )
A.a<c<bB.a<b<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某校高一学生1500人,高二学生1200人,高三学生1300人,为了调查高中各年级学生的寒假学习计划,决定采用分层抽样法抽取200人进行调查,则应从高二年级抽取的人数为(  )
A.75B.65C.60D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,平面PAC⊥平面ABC,AC⊥BC,PE∥CB,M是AE的中点.
(1)若N是PA的中点,求证:平面CMN⊥平面PAC;
(2)若MN∥平面ABC,求证:N是PA的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l过坐标原点,且倾斜角是直线y=3x-8的倾斜角的2倍,求直线l的方程.

查看答案和解析>>

同步练习册答案