精英家教网 > 高中数学 > 题目详情
已知集合M是同时满足下列两个性质的函数f(x)的全体
①函数f(x)在其定义域上是单调函数.
②f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域为[
a
2
b
2
].
(1)判断函数f(x)=x+
2
x
(x>0)
是否属于M,说明理由.
(2)判断g(x)=-x3是否属于M,说明理由,若是,求出满足②的区间[a,b].
分析:(1)确定函数在其定义域上不是单调函数,即可求得结论;
(2)利用新定义,建立方程组,从而可得结论.
解答:解:(1)∵f(x)=x+
2
x
(x>0)
在(0,
2
)上单调递减,在(
2
,+∞)上单调递增
∴函数f(x)=x+
2
x
(x>0)
不属于M;
(2)∵g(x)=-x3在R上递减
∴若g(x)=-x3属于M,则
-a3=
b
2
-b3=
a
2

a=-
2
2
,b=
2
2

∴满足②的区间为[-
2
2
2
2
]
点评:本题考查新定义,考查学生的计算能力,正确理解新定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体:
①函数f(x)在其定义域上是单调函数;
②在函数f(x)的定义域内存在闭区间[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2
.请解答以下问题
(1)判断函数f(x)=x+
2
x
(x∈(0,+∞))
是否属于集合M?并说明理由;
(2)判断函数g(x)=-x3是否属于集合M?并说明理由.若是,请找出满足②的闭区间[a,b];
(3)若函数h(x)=
x-1
+t∈M
,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体:
①f(x)在其定义域上是单调增函数或单调减函数;
②在f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域是[
1
2
a,
1
2
b]

(Ⅰ)判断函数y=-x3是否属于集合M?并说明理由.若是,请找出区间[a,b];
(Ⅱ)若函数y=
x-1
+t
∈M,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)组成的集合:①f(x)在其定义域上是单调增函数或单调减函数;②在f(x)的定义域内存在区间,使得f(x)在[a,b]上的值域是[
1
2
a,
1
2
b]

(Ⅰ)判断函数f(x)=
x
是否属于集合M?若是,则求出a,b,若不是,说明理由;
(Ⅱ)若函数f(x)=
x-1
+t∈M
,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体:①f(x)在其定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使得f(x)在[a,b]上的最小值是
a
2
,最大值是
b
2
.请解答以下问题:
(1)判断函数g(x)=-x3是否属于集合M?并说明理由,若是,请找出满足②的闭区间[a,b];
(2)若函数h(x)=
x-1
+t∈M
,求实数t的取值范围.

查看答案和解析>>

同步练习册答案