精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分14分)如图,在四面体中,,点的中点,点在线段上,且

1)若平面,求实数的值;

2)求证:平面平面

【答案】 详见解析

【解析】

试题(1)已知线面平行,可利用其性质定理,将其转化为线线平行,得比例等量关系:因为平面,易得平面,平面 平面,所以,又点的中点,点在线段上,所以点的中点,由2)证面面垂直,关键证线面垂直,由题意分析证平面,这是因为,点EBC的中点,所以,又平面,所以平面

试题解析:解:(1)因为平面,易得平面

平面 平面

所以

又点的中点,点在线段上,

所以点的中点,

7

2)因为,点EBC的中点,

所以

平面

所以平面

平面

所以平面平面AED14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:

(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)

(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)的左右焦点分别为F1F2,图象经过点A20)和点B0)过F2与坐标轴不垂直的直线l与椭圆C交于PQ两点,NPQ的中点.

1)求椭圆C的方程;

2)设点,且MNPQN,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左右焦点恰好是等轴双曲线的左右顶点,且椭圆的离心率为是双曲线上异于顶点的任意一点,直线与椭圆的交点分别记为

1)求椭圆的方程;

2)设直线的斜率分别为,求证:为定值;

3)若存在点满足,试求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知,B为AC的中点,分别以AB,AC为直径在AC的同侧作半圆,M,N分别为两半圆上的动点不含端点A,B,,且,则的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,教育部发文确定新高考改革正式启动,湖南、广东、湖北等8省市开始实行新高考制度,从2018年下学期的高一年级学生开始实行.为了适应新高考改革,某校组织了一次新高考质量测评,在成绩统计分析中,高二某班的数学成绩的茎叶图和频率分布直方图因故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

1)求该班数学成绩在的频率及全班人数;

2)根据频率分布直方图估计该班这次测评的数学平均分;

3)若规定分及其以上为优秀,现从该班分数在分及其以上的试卷中任取份分析学生得分情况,求在抽取的份试卷中至少有份优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,记A1F与平面BCC1B1所成的角为θ,下列说法正确的个数是(

①点F的轨迹是一条线段

A1FD1E不可能平行

A1FBE是异面直线

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,射线l(x≥0),曲线C1的参数方程为为参数),曲线C2的方程为;以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C3的极坐标方程为

1)写出射线l的极坐标方程以及曲线C1的普通方程;

2)已知射线lC2交于OM,与C3交于ON,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,AB=3,BC=4,E,F分别在线段BC,AD上,EF∥AB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.

(1)在线段BC是否存在一点E,使得ND⊥FC ,若存在,求出EC的长并证明;

若不存在,请说明理由.

(2)求四面体NEFD体积的最大值.

查看答案和解析>>

同步练习册答案