精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\left\{{\begin{array}{l}{|{{log}_2}x|,}&{(0<x<4)}\\{-\frac{1}{2}x+6,}&{(x≥4)}\end{array}}\right.$,若方程f(x)-k=0有三个不同的解a,b,c,且a<b<c,则ab+c的取值范围是(11,13).

分析 先画出图象,再根据条件即可求出其范围.不妨设a<b<c,利用f(a)=f(b)=f(c),可得-log2a=log2b=-$\frac{1}{2}$c+6,由此可确定ab+c的取值范围.

解答 解:根据已知画出函数图象:
 
∵f(a)=f(b)=f(c),∴-log2a=log2b=-$\frac{1}{2}$c+6,
∴log2(ab)=0,0<-$\frac{1}{2}$c+6<2,
解得ab=1,10<c<12,
∴11<ab+c<13.
故答案为:(11,13).

点评 本题考查分段函数,考查绝对值函数,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.抽取某种型号的车床生产的10个零件,编号为A1,A2,…,A10,测量其直径(单位:cm),得到下面数据:
编号A1A2A3A4A5A6A7A8A9A10
直径1.511.491.491.511.491.481.471.531.521.47
其中直径在区间[1.49,1.51]内的零件为一等品.
(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率;
(3)若甲、乙分别从一等品中各取一个,求甲取到零件的直径大于乙取到零件的直径的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x.
(1)求函数f(x)的极值;
(2)过点P(1,n)(n≠-2)作曲线y=f(x)的切线,问:实数n满足什么样的取值范围,过点P可以作出三条切线?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{\sqrt{3}}}{2}sin2x-{cos^2}x-\frac{1}{2}$,x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax2+bx+c(a>0),对于任意的x1,x2(x1≠x2),则$f(\frac{{{x_1}+{x_2}}}{2})$与$\frac{{f({x_1})+f({x_2})}}{2}$的大小关系是(  )
A.$f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$B.$f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinα=-$\frac{\sqrt{10}}{10}$,且α为第四象限角,则tanα的值等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知公差不为0的等差数列{an},其前n项和为Sn,若a1,a3,a4成等比数列,则$\frac{{{S_3}-{S_2}}}{{{S_5}-{S_3}}}$的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,AB=2,BC=$\sqrt{10}$,AC=3,O是△ABC的外心,求满足下列关系式$\overrightarrow{AO}$=p•$\overrightarrow{AB}$+q•$\overrightarrow{AC}$的实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=-tan2x-tanx-3,x∈[-$\frac{π}{4}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

同步练习册答案