精英家教网 > 高中数学 > 题目详情
已知双曲线,过能否作一条直线,与双曲线交于两点,且点是线段中点?若能,求出的方程;若不能,请说明理由.
解:设与双曲线交于 
 

 ,方程为:  

故直线与双曲线没有交点,即直线不存在
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为
(1)当时,求椭圆的标准方程;
(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆的左、右焦点,是该椭圆短轴的一个端点,直线与椭圆交于点,若成等差数列,则该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆的中心在原点,焦点在y轴上,离心率为,且
椭圆经过圆的圆心C。
(I)求椭圆的标准方程;
(II)设直线与椭圆交于A、B两点,点且|PA|=|PB|,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线的左准线与两条渐近线交于 两点,左焦点在以为直径的圆内,则该双曲线的离心率的取值范围为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆C:+=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线yx+2相切,求椭圆C的焦点坐标;
(2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于MN两点,记直线PMPN的斜率分别为kPMkPN,当kPM·kPN=-时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,若||-|| = k,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若= (+), 则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线 =1与椭圆=1有相同的焦点。
其中真命题的序号为­­­______________(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点在轴上,长轴长是短轴长的两倍,则的值为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在下列命题中:
①方程|x|+|y|=1表示的曲线所围成区域面积为2;
②与两坐标轴距离相等的点的轨迹方程为y=±x;
③与两定点(-1,0)、(1,0)距离之和等于1的点的轨迹为椭圆;
④与两定点(-1,0)、(1,0)距离之差的绝对值等于1的点的轨迹为双曲线.
正确的命题的序号是________.(注:把你认为正确的命题序号都填上)

查看答案和解析>>

同步练习册答案