精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
2
-(
1
2
x(x≠-1)的值域是
 
考点:指数函数单调性的应用
专题:计算题
分析:构造函数g(x)=(
1
2
x(x≠-1),则由指数函数图象可知其值域是(0,+∞)且不等于2,故可求f(x)的值域.
解答: 解:由指数函数图象可知g(x)=(
1
2
x(x≠-1)的值域是(0,+∞)且不等于2.
故f(x)=
1
2
-(
1
2
x(x≠-1)的值域是(-∞,
1
2
)且不等于-
3
2

故答案为:(-∞,
1
2
)且不等于-
3
2
点评:本题主要考察了指数函数单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
①GH与EF平行;
②BD与MN为异面直线;
③GH与MN成60°角;
④DE=2MN.
以上四个命题中,正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知“k∈(m,+∞)”是“
x2
2
+
y2
8
xy
2k
”的充分不必要条件,则实数的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如下算法中,输出i的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司有男职员45名,女职员15名,按照分层抽样的方法组建了一个4人的科研攻关小组.
(1)科研攻关小组中男、女职员的人数;
(2)经过一个月的学习、讨论,这个科研攻关组决定选出两名职员做某项实验,方法是先从小组里选出1名职员做实验,该职员做完后,再从小组内剩下的职员中选一名做实验,求选出的两名职员中恰有一名女职员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(f(x))=0,f(g(x)=0的实根个数分别为m、n,则m+n=(  )
A、18B、16C、14D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,对称轴为x轴,焦点在双曲线
x2
4
-
y2
2
=1
上,则抛物线方程为(  )
A、y2=8x
B、y2=4x
C、y2=2x
D、y2=±8x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=-loga(1-x).
(1)当0<a<1时,解不等式:f(x)+g(x)≥0;
(2)当a>1,x∈[0,1)时,总有2f(x)+g(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C的对边分别为a,b,c,且满足
sin(2A+B)
sinA
=2+2cos(A+B).
(1)证明:b=2a;
(2)若c=
7
a,求∠C大小.

查看答案和解析>>

同步练习册答案