精英家教网 > 高中数学 > 题目详情
4.经过两直线2x-3y-12=0和x+y-1=0的交点,并且在两坐标轴上的截距相等的直线方程为2x+3y=0;或x+y+1=0.

分析 联解两条直线的方程,得到它们的交点坐标(-3,-1).再根据直线是否经过原点,分两种情况加以讨论,即可算出符合题意的两条直线方程.

解答 解:由$\left\{\begin{array}{l}{2x-3y-12=0}\\{x+y-1=0}\end{array}\right.$解得$\left\{\begin{array}{l}{x=3}\\{y=-2}\end{array}\right.$
∴直线2x-3y-12=0和x+y-1=0的交点坐标为(3,-2)
①所求直线经过原点时,满足条件
方程设为y=kx,可得3k=-2,解得k=-$\frac{2}{3}$,此时直线方程为y=-$\frac{2}{3}$x,即2x+3y=0;
②当所求直线在坐标轴上的截距不为0时,方程设为x+y=a,
可得3-2=a,解之得a=1,此时直线方程为x+y-1=0
综上所述,所求的直线方程为2x+3y=0;或x+y+1=0.

点评 本题给出经过两条直线,求经过两条直线的交点且在轴上截距相等的直线方程.着重考查了直线的基本量与基本形式、直线的位置关系等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.f(x)=(log3 x)2+(a-1)log3x+3a-2,(x>0,a∈R).
(1)若函数f(x)的值域是[2,+∞),求a的值;
(2)若f(3x)+log3(9x)≤0对于任意x∈[3,9]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sin(π+α)=-$\frac{3}{5}$,求$\frac{sin(3π+α)tan(2π+α)cos(5π+α)}{tan(π+α)tan(3π+α)sin(2π+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算($lg\frac{1}{5}-lg2$)÷100${\;}^{-\frac{1}{2}}$+${({\frac{1}{3}})^{{{log}_3}\frac{1}{10}}}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的个数为(  )
(1)椭圆x2+my2=1的焦点在x轴上,长轴长是短轴长的2倍,则m的值为4.
(2)直线L:ax+y-a=0在x轴和y轴上的截距互为相反数,则a的值是-1
(3)圆x2+y2=9的弦过点P(1,2),当弦长最短时,圆心到弦的距离为2.
(4)等轴双曲线的离心率为1.
A.2B.3C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定义域是R,则实数a的取值范围是(  )
A.$({0,\frac{4}{9}})$B.$[{0,\frac{4}{9}}]$C.$[{0,\frac{4}{9}})$D.$({0,\frac{4}{9}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.我国2010年底的人口总数为M,人口的年平均自然增长率p,到2020年底我国人口总数是(  )
A.M(1+P)3B.M(1+P)9C.M(1+P)10D.M(1+P)11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.连锁经营公司所属5个零售店某月的销售额利润资料如表:
商品名称ABCDE
销售额x/千万元35679
利润额y/百万元23345
(1)画出销售额和利润额的散点图
(2)若销售额和利润额具有相关关系,试计算利润额y对销售额x的回归直线方程.
(3)估计要达到1000万元的利润额,销售额约为多少万元.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,则g(g($\frac{1}{3}$))=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案