精英家教网 > 高中数学 > 题目详情
若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则不等式f(x2-1)<0的解集为
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据当x∈[0,+∞)时,f(x)=x-1,即函数f(x)是偶函数我们易将f(x2-1)<0转化为一个整式不等式,解整式不等式即可得到答案.
解答: 解:∵当x∈[0,+∞)时,f(x)=x-1
∴当x∈[0,+∞)时,f(x)<0
即x-1<0
解得:[0,1)
又∵函数f(x)是偶函数
∴f(x)<0的解集为(-1,1)
∴f(x2-1)<0可化为:
-1<x2-1<1
解得:0<x2<2,
∴不等式f(x2-1)<0的解集是{x|-
2
<x<0,或0<x<
2
},
故答案为:{x|-
2
<x<0,或0<x<
2
}
点评:本题考查的知识点是函数奇偶性的应用,及其他不等式的解法,根据已知将f(x2-1)<0转化为一个整式不等式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P,S,T为三个非空集合,已知x∈P是x∈S或x∈T成立的充要条件,则x∈S是x∈P成立的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场准备举行促销活动,对选出的某品牌商品采用的促销方案是有奖销售,即在该商品价格的基础上将价格提高180元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖的概率为
1
2
,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利(顾客获奖奖金数的期望值不大于商场的提价数额)?

查看答案和解析>>

科目:高中数学 来源: 题型:

设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=-x0,则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2-3x-a+
5
2
在区间[1,4]上存在次不动点,则实数a的取值范围是(  )
A、(-∞,0)
B、(0,
1
2
C、[
1
2
,+∞)
D、(-∞,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当2≤x≤4时,f(x)=1-|x-3|,则集合S={x|f(x)=f(34)}中的最小元素是(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

企业为了研究员工工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,其中支持企业改革的调查者中,工作积极的54人,工作一般的32人,而不太赞成企业改革的调查者中,工作积极的有40人,工作一般的63人.
(1)根据以上数据建立一个2×2的列联表;?
(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系??

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法的流程图,若输入x的值为2,则输出y的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a 
1
2
+a -
1
2
=3(a>0),求
a
3
2
-a-
3
2
a
1
2
-a-
1
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算r:r(xn)=nxn-1,r(c)=0,r(cx)=cr(x)(c为常数),r(x+y)=r(x)+r(y),若3x2•f(x)+x3•r[f(x)]=5x4+2x3-3x2,f(x)为多项式函数,则f(x)=
 

查看答案和解析>>

同步练习册答案