精英家教网 > 高中数学 > 题目详情

已知函数f(t)对任意实数x、y都有:f(x+y)=f(x)+f(y)+3xy(x+y+2)+3,且f(1)=1.

(1)求f(0)、f(-1)、f(2)的值;

(2)若t为正整数,求f(t)的表达式.

(3)满足条件f(t)=t的所有整数t能否构成等差数列?若能构成等差数列,求出此数列;若不能构成等差数列,请说明理由.

答案:
解析:

  解:(1)令 1分

  令,得…2分

  令,得 3分

  (2)

   4分

  

  

   8分

  (3)经验证符合 9分

  设,则

  又

  

   11分

  

  

  

   13分

可知这三个数可以组成等差数列:-3,-1,1或1,-1,-3. 14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知函数f(x)=
1,x∈Q
0,x∈CRQ
,则f(f(x))=
1
1

下面三个命题中,所有真命题的序号是
①②③
①②③

①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源:惠州一模 题型:解答题

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省泉州市南安市国光中学高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省常州一中高三(下)期初数学试卷(解析版) 题型:解答题

已知函数f(x)=ex,直线l的方程为y=kx+b.
(1)求过函数图象上的任一点P(t,f(t))的切线方程;
(2)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(3)若f(x)≥kx+b对任意x∈[0,+∞)成立,求实数k、b应满足的条件.

查看答案和解析>>

同步练习册答案