精英家教网 > 高中数学 > 题目详情

已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=1-x2,求解函数f(x)的解析式,并作出函数图象.

解:令x<0,则-x>0,
∵x>0时,f(x)=1-x2
∴f(-x)=1-x2,又f(x)为定义在R上的奇函数,
∴f(-x)=-f(x)=1-x2
∴f(x)=x2-1(x<0).
∴f(x)=.其图象如下:
分析:令x<0,则-x>0,由x>0时,f(x)=1-x2,可求得f(-x),而f(x)为定义在R上的奇函数,从而可求得x<0时的解析式,最后用分段函数表示函数f(x)的解析式即可.
点评:本题考查函数奇偶性的性质与函数的图象,求得x<0时的解析式是关键,考查运算与作图能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则(  )
A、f(2)>e2f(0),f(2010)>e2010f(0)B、f(2)<e2f(0),f(2010)>e2010f(0)C、f(2)>e2f(0),f(2010)<e2010f(0)D、f(2)<e2f(0),f(2010)<e2010f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2013)+f(-2014)的值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=
2x2x+1

(1)证明函数f(x)在(0,1)是增函数
(2)求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
f(x)=
4-x2
+
x2-4
既是奇函数,又是偶函数;
②f(x)=x和f(x)=
x2
x
为同一函数;
③已知f(x)为定义在R上的奇函数,且f(x)在(0,+∞)上单调递增,则f(x)在(-∞,+∞)上为增函数;
④函数y=
x
2x2+1
的值域为[-
2
4
2
4
]

其中正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则当x<0时,有(  )
A、f(x)=-x(1+x)B、f(x)=-x(1-x)C、f(x)=x(1-x)D、f(x)=x(x-1)

查看答案和解析>>

同步练习册答案