精英家教网 > 高中数学 > 题目详情
已知:定义域为R的函数f(x)=ax-x3在区间(0,
2
2
)
内是增函数.
(1)求实数a的取值范围;
(2)若f(x)的极小值为-2,求实数a的值.
分析:(1)对函数f(x)=ax-x3进行求导,转化成f′(x)在(0,
2
2
)上恒有f′(x)>0,求出参数a的取值范围.
(2)因为函数f(x)的极小值为-2,所以将极小值点的值代入代入到函数关系式中得到等式,解方程即可得a的值.
解答:解:(1)f′(x)=a-3x2,依题意x∈(0,
2
2
)时,f′(x)>0,即a-3x2>0
恒成立.
a≥3×(
2
2
)
2
=
3
2
,所以a的范围是[
3
2
,+∞)
(6分)
(2)令f′(x)=0,即a-3x2=0,得x=±
a
3
,(a≥
3
2
)

当x变化时f′(x)和f(x)的变化情况如下表:
x (-∞,-
a
3
-
a
3
(-
a
3
a
3
a
3
a
3
,+∞)
f′(x) - 0 + 0 -
f(x) 极小值 极大值
∴x=-
a
3
时,f(x)取极小值.
故f(-
a
3
)=a•(-
a
3
)-(-
a
3
3=-2解得:a=3.(14分)
点评:主要考查函数单调性的综合运用,函数的单调性特征与导数之间的综合应用能力,把两个知识加以有机会组合.特别,在研究函数的单调区间或决断函数的单调性时,三个基本步骤不可省,一定要在定义域内加以求解单调区间或判断单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

24、已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(x2-2mx+2m2+
9m2-3
)的定义域为R.
(1)求实数m的取值集合M;
(2)求证:对m∈M所确定的所有函数f(x)中,其函数值最小的一个是2,并求使函数值等于2的m的值和x的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

科目:高中数学 来源:2008年11月北京市北大附中高中高一(上)课改数学模块水平监测(必修1)(解析版) 题型:解答题

已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
x3.271.57-0.61-0.590.260.42-0.35-0.564.25
y-101.63-10.040.070.030.210.20-0.22-0.03-226.05
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.

查看答案和解析>>

同步练习册答案