精英家教网 > 高中数学 > 题目详情

【题目】中,已知,则( )

A. 等腰直角三角形 B. 等边三角形

C. 锐角非等边三角形 D. 钝角三角形

【答案】A

【解析】

已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到AB,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+BCAB=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.

将已知等式2acosBc,利用正弦定理化简得:2sinAcosB=sinC

∵sinC=sin(A+B)=sinAcosB+cosAsinB

∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(AB)=0,

AB都为△ABC的内角,∴AB=0,即AB

已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC

[cos(A+B)﹣cos(AB)](2﹣cosC)=1﹣ cosC

∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣ cosC

即(cosC+1)(2﹣cosC)=2﹣cosC

整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,

∴cosC=0cosC=2(舍去),

C=90°,

则△ABC为等腰直角三角形.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

50

已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.

(1)请将上面的列联表补充完整;

(2)能否在犯错概率不超过的前提下认为喜好体育运动与性别有关?说明你的理由.

(参考公式: )

临界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数)若以O点为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cos θ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上各点的横坐标缩短为原来的 ,再将所得曲线向左平移1个单位,得到曲线C1 , 求曲线C1上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S= c,则ab的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确个数为(

1)若,当时,则上是单调递增函数;

2单调减区间为

3

-3

-2

-1

0

1

2

3

4

3

2

1

-2

-3

-4

上述表格中的函数是奇函数;

4)若上的偶函数,则都在图像上.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:

求分数在[120,130)内的频率,并补全这个频

率分布直方图;

统计方法中,同一组数据常用该组区间的中点

值作为代表,据此估计本次考试的平均分;

(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

同步练习册答案