精英家教网 > 高中数学 > 题目详情

【题目】如图在三棱锥中,均为等腰三角形,且

1)判断是否成立?并给出证明;

2)求直线与平面所成角的正弦值.

【答案】1不成立,证明见解析;(2.

【解析】

1)假设,得平面,由线面垂直的性质可得,与矛盾,从而可得不成立;

2)取的中点的中点,证明平面,进而可得平面平面,再取的中点,证明平面,根据线面角的定义知为直线与平面所成的角,在直角三角形中求解.

1不成立,证明如下:

假设,因为,且

所以平面

所以,这与已知矛盾,

所以不成立.

2)如图,取的中点的中点,连接

由已知计算得

由已知得,且

所以平面,所以平面平面

的中点,连接

平面,从而是直线与平面所成的角,

因为,所以,即直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若不等式对任意的恒成立,求的取值范围;

2)当时,记的最小值为,正实数,,满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥是正三角形为其中心.面的中点.

(1)证明:

(2)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求证:对于任意,不等式恒成立;

(Ⅱ)设函数,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面积为S,且4S=(a2+b2-c2),这三个条件中任意选择一个,填入下面的问题中,并求解,在锐角ABC中,角ABC所对的边分别为abc,函数=2sinωxcosωx+2cos2ωx的最小正周期为πc在[0]上的最大值,求a-b的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为菱形,且直线又棱 的中点,

(Ⅰ) 求证:直线

(Ⅱ) 求直线与平面的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知分别为的中点,,将沿折起,得到四棱锥的中点.

1)证明:平面

2)当正视图方向与向量的方向相同时,的正视图为直角三角形,求此时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为的中点,,将沿折起,得到四棱锥的中点.

1)证明:平面

2)当正视图方向与向量的方向相同时,此时的正视图的面积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

同步练习册答案