精英家教网 > 高中数学 > 题目详情
5.过点P(-2,3)且在两坐标轴上的截距相等的直线l的方程为x+y-1=0或3x+2y=0.

分析 当直线经过原点时,直线方程为:y=$\frac{3}{-2}$x.当直线不经过原点时,设直线方程为:x+y=a,把点P的坐标代入即可得出.

解答 解:当直线经过原点时,直线方程为:y=$\frac{3}{-2}$x,即3x+2y=0.
当直线不经过原点时,设直线方程为:x+y=a,则-2+3=a,解得a=1,参数直线方程为:x+y-1=0.
综上可得:直线方程为:x+y-1=0或3x+2y=0.
故答案为:x+y-1=0或3x+2y=0.

点评 本题考查了截距式、分类讨论方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}&{\;}\\{x-y≤2}&{\;}\\{x≥1}&{\;}\end{array}\right.$,若x+2y≥a恒成立,则实数a的取值范围为(  )
A.(-∞,-1]B.(-∞,2]C.(-∞,3]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知tanα=-$\frac{2}{3}$,tan(α+β)=$\frac{1}{2}$,那么tanβ=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但没有最小值,则ω的取值范围是($\frac{3}{4}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线mx-y-2=0与3x-(2+m)y-1=0平行,则实数m为(  )
A.1或-3B.-1或3C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.记所有非零向量构成的集合为V,对于$\overrightarrow{a}$,$\overrightarrow{b}$∈V,$\overrightarrow{a}$≠$\overrightarrow{b}$,定义V($\overrightarrow{a}$,$\overrightarrow{b}$)=|x∈V|x•$\overrightarrow{a}$=x•$\overrightarrow{b}$|
(1)请你任意写出两个平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,并写出集合V($\overrightarrow{a}$,$\overrightarrow{b}$)中的三个元素;
(2)请根据你在(1)中写出的三个元素,猜想集合V($\overrightarrow{a}$,$\overrightarrow{b}$)中元素的关系,并试着给出证明;
(3)若V($\overrightarrow{a}$,$\overrightarrow{b}$)=V($\overrightarrow{a}$,$\overrightarrow{c}$),其中$\overrightarrow{b}$≠$\overrightarrow{c}$,求证:一定存在实数λ1,λ2,且λ12=1,使得$\overrightarrow{a}$=λ1$\overrightarrow{b}$+λ2$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)定义域为R,命题:p:f(x)为奇函数,q:${∫}_{-1}^{1}$f(x)dx=0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司的招聘考试有编号分别为1,2,3的三个不同的4类基本题和一道A类附加题:另有编号分别为4,5的两个不同的B类基本题和一道B类附加题.甲从这五个基本题中一次随机抽取两道题,每题做对做错及每题被抽到的概率是相等的.
(I)用符号(x,y)表示事件“抽到的两题的编号分别为x、y,且x<y”共有多少个基本事件?请列举出来;
(Ⅱ)求甲所抽取的两道基本题的编号之和小于8但不小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆C:x2+y2-2x-4y=0,则下列点在圆C内的是(  )
A.(4,1)B.(5,0)C.(3,4)D.(2,3)

查看答案和解析>>

同步练习册答案