精英家教网 > 高中数学 > 题目详情

【题目】已知函数单调递增,其中

(1)求的值;

(2)若,当时,试比较的大小关系(其中的导函数),请写出详细的推理过程;

(3)当时, 恒成立,求的取值范围.

【答案】(1) (2)略 (3)

【解析】试题分析:函数在某区间上单调递增,只需函数的导数大于零在此区间上恒成立,利用恒成立极值原理求出满足的条件,求出的值;第二步比较大小可以转化为研究函数的单调性和极值问题去解决,第三步可以利用作差法构造函数,通过利用导数研究函数单调性和极值,达到证明不等式的目的.

试题解析:

(1)∵单调递增,

上恒成立,即)恒成立,

∵当时,

,又,∴

,∴

(2)由(1)可知

,∴

上单调递增,∴

,则单调递减,

,使得单调递增,在单调递减,

又两个函数的最小值不同时取得,

,即

(3)∵恒成立,即恒成立,

,则

由(1)得,即),∴),

),∴

时,∵,∴

单调递减,∴,符合题意;

时, 上单调递增,

单调递增,∴符合题意,

时, ,∴上单调递增,

,且

存在唯一零点

单调递减,在单调递增,

∴当时,

单调递减,∴,不合题意.

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不交于同一点的三条直线l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)当这三条直线不能围成三角形时,求实数m的值.
(2)当l3与l1 , l2都垂直时,求两垂足间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平行四边形中, 分别为 的中点,

平面.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并计算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)图象上不同两点A(x1 , y1),B(x2 , y2)处的切线的斜率分别是kA , kB , 规定φ(A,B)= 叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题: 1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>
2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;
4)设曲线y=ex上不同两点A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);
以上正确命题的序号为(写出所有正确的)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[3,6],则函数y= 的定义域为(
A.[ ,+∞)
B.[ ,2)
C.( ,+∞)
D.[ ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点轴上的一个定点,其横坐标为),已知当时,动圆过点且与直线相切,记动圆的圆心的轨迹为

(Ⅰ)求曲线的方程;

(Ⅱ)当时,若直线与曲线相切于点),且与以定点为圆心的动圆也相切,当动圆的面积最小时,证明: 两点的横坐标之差为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
(1)函数f(x)在x>0时是增函数,x<0时也是增函数,所以f(x)是增函数;
(2)若m=loga2,n=logb2且m>n,则a<b;
(3)函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上是减函数,则实数a的取值范围是a≤﹣3;
(4)y=log (x2+x﹣2)的减区间为(1,+∞).
其中正确的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案