A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{10}}{4}$ | D. | $\frac{\sqrt{10}}{2}$ |
分析 根据双曲线的定义结合圆的性质可知PF1⊥PF2,由已知结合双曲线的定义求得|PF1|,|PF2|,再由勾股定理得答案.
解答 解:如图,∵P在以F1F2为直径的圆上,
∴F1F2为圆的直径,则PF1⊥PF2,
∵|PF1|=3|PF2|,
∴由$\left\{\begin{array}{l}{|P{F}_{1}|-|P{F}_{2}|=2a}\\{|P{F}_{1}|=3|P{F}_{2}|}\end{array}\right.$,
解得|PF1|=3a,|PF2|=a,
∴$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=9{a}^{2}+{a}^{2}=4{c}^{2}$,
即$\frac{{c}^{2}}{{a}^{2}}=\frac{10}{4}$,得e=$\frac{c}{a}=\frac{\sqrt{10}}{2}$.
故选:D.
点评 本题考查双曲线的简单性质,考查了双曲线定义的应用,根据圆的性质得到PF1⊥PF2是解决本题的关键.考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$f($\frac{π}{4}$)<f($\frac{π}{3}$) | B. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) | C. | cos1•f(1)>$\frac{\sqrt{3}}{2}$f($\frac{π}{6}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{a}$>$\frac{1}{b}$ | B. | $\frac{1}{a-b}$>$\frac{1}{a}$ | C. | ac>bc | D. | a2<b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com