精英家教网 > 高中数学 > 题目详情

四面体ABCD的棱长都是1,P,Q两点分别在棱AB,CD上,则P与Q的最短距离是


  1. A.
    2
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:由题意可知四面体是正四面体,P与Q的最短距离是棱AB,CD的中点.
解答:解:由题意可知四面体是正四面体,如图
P与Q的最短距离是棱AB,CD的中点,
AP=,AQ=
所以:PQ=
故选C.
点评:本题考查棱锥的结构特征,点、线、面间的距离计算,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB,BC,CA的距离分别为d1,d2,d3,则有d1+d2+d3为定值
3
2
a
;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1,d2,d3,d4,则有d1+d2+d3+d4为定值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B、C、D均在平面α外,且在平面α同一侧,则点B到平面α的距离是(  )
A、
a
2
B、
a
3
C、
2
a
2
D、
3
a
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•静安区二模)如图所示,已知正四面体ABCD的棱长为2,点E为棱AD的中点,求:
(1)正四面体ABCD的体积;
(2)直线CE与平面BCD所成的角的大小(用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正四面体ABCD的棱长为3cm.
(1)求证:AD⊥BC;
(2)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(3)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四面体ABCD的棱长为a,E、F分别是AD、BC的中点,
(1)求异面直线EF与CD所成的角;
(2)求D点到平面EBC的距离.

查看答案和解析>>

同步练习册答案